AD-A194 104 ARTIFICIAL INTELLIGENCE SOFTWARE HCWISITIOI PROGRAN
YOLUME 41(U> SANDERS RSSOCIRTES INC_NASHUR NH
C_BARDANIL ET AL. DEC 87 RADC-TR-87-249-VOL- 1

F39602-85-C-0234 F/G 12/5

i
§

o
F

il =
= m“ 18

lizs s e

EEEE
N

i

err
r
(43

5

PN :

2 - - o

MICROCOPY RESOLUTION TEST CHAR1
ORFAL ~TANDARDS 1962 &

-
b 3]
Bl :'Jr(

1T

ey
e

A

e e
P

k)

&

."’ .

11.

o

3

o
s

A
4

Ny

't .
"'z}'. v

5

2D

ke B

)
—-r? ——y 0 (]
- - ; ;]
Y - WY e
SR R O =
ﬁ":*. e :;u.. e, M Lo

RN
-y ROt e o

R T JETT IRyt S T C R R LA A Ry AN AR RO R A K O OO T 25804 "M a's, NN - PL RN T WU

¥ 3

K RADC-TR-87-248, Vol | (of two)

ol Final Tochnical Report
R Decomber 1987
", <3
RS OTC FILE COBY
<«
% (o))

|«
‘.‘: 5 ARTIFICIAL INTELLIGENCE SOFTWARE |
‘E T4 ACQUISITION PROGRAM DTI C ‘ 3_';';
; E%
: iy
:.?' Sanders Associates, Inc. 'i%
,,
-:'- %
3 T
i s
) . @
v ue
\ R
i .

. ROME AIR DEVELOPMENT CENTER N
b Alr Force Systems Command NN

Griffiss Air Force Base, NY 13441-56700

88 4 2/ 148

R S OO TR KT, A i, Y Pt o) GF I aTa :}‘\".\p(r "\;,-:‘\.-.‘_\:,:- ,‘;-;.':_..'.:’
N RS e i
‘.'s".“: OO '0.: ,"‘"""‘"v ? "!m\:?" '."i.n s"! .'!:’."t?‘.n'.'.o. Xl s >.“. oW B O S C ,

P WO MY WSO N M KA K 8

<y,

A R T R I N L R A T A R L UL N o e M 0 T L I e W N R e e A T

-n‘.'a',u'. PO = be* i 'l'.'.|

gl

- \

‘ % .tn' '}

®

L W N

%)

’ L}

This report has been reviewed by the RADC Public Affairs Office (PA) and @"‘

is releasable to the National Technical Information Service (NTIS). At NTIS ":‘.o .::

it will be releasable to the general public, including foreign nations. "'-"

RADC-TR-87-249, Vol I (of two) has been reviewed and is approved Ay

for publication. vl

O

!I'n.l‘!‘:

"‘i L)

M 0,.4‘\

M ot ot

APPROVED: 4(" tv S:::(:::::

OO0

RICHARD M. EVANS "",S:‘::f

Project Engineer p ":"

R

o

.“'0.".

f Ul s

APPROVED: C 1 AT st

RAYMOND P. URTZ, JR. o)

Technical Director |‘é:"

Directorate of Command & Control {‘g‘:

s

A o

. N

FOR THE COMMANDER: E’J"E.
L g 2

g

JOHN A. RITZ Pt

Directorate of Plans & Programs 1‘;_““(

:&::,W

RN

:%;

" \]

(

v 'l-'
ot

.‘ :).)“

:-:-;2:

gt

If your address has changed or if you wish to be removed from the RADC ::';:"
mailing list, or if the addressee is no longer employed by your organization, []

please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in {-.
maintaining a current mailing list. o

e

Do not return copies of this report unless contractual obligations or :-0:'_
notices on a specific document require that it be returned.)
L J

.

A

\

B

sy,

IO LI p v* ' 1fvv v'),-v_,v J,—v)pé;s*‘ R AT A biy el Bl Fia Vie e g T T WA RS SR T AT Y, ol Sl A W 0% \
S AT '. J"i i ~ it) SR LAY RN SRR LA RALN SR, RSN AU PO N R
AR A : b e R P

NQﬂ' {?MR'

‘) "l."l.

UNCLASSIFIED
URITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

la. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

b RESTRICTIVE MARKINGS
N/A

I 22 SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT

N/A Approved for public release;

2b /DECLASSIFICATION/DOWNGRAO!NG SCHEDULE distribution unlimited.

N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER!S)
N/A RADC-TR-87-249, Vol I (of two)

6a. NAME OF PERFORMING ORGANIZATION
Sanders Associates, Inc.

6b OFFICE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION
Rome Air Development Center (COEE)

6¢. ADDRESS (City, State, and ZIP Code)
95 Canal Street, CS 2004
Nashua NH 03061-2004

7b. ADDRESS (City, State, and 2IP Code)
Griffiss AFB NY 13441~5700

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL
ORGANIZATION (If applicable)

Rome Air Development Center COEE

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602-85-C-0254

8c. ADDRESS (City, State, and ZiP Code)
Griffiss AFB NY 13441-5700

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
63728F 2532 01 16

11 TITLE (inciude Security Classification)

ARTIFICIAL INTELLIGENCE SOFTWARE ACQUISITION PROGRAM

s Py
12 PERSONAL AUTHOR(S)

Carol Bardawil, Larry Fry, Sandy King, Linda Leszcynski, Graham 0'Neil

e
13a. TYPE OF REPORT 13b TIME COVERED

14, DATE OF REPORT (Yea; Month, Day) |15 PAGE cg)um
21

Final from Aug 85 o Aug 87 December
16. SUPPLEMENTARY NOTATION
N/A
17 COSAT! CODES 8 SUBJECT TERMS (Cantinue on reverse if necessary and identify by biock number)
FIELD GROUP SUS-GROUP Artificial Intelligence, Software development process,
12 05 software acquisition model, knowledge-based sytems,
documentation standards.

‘The goal of this research was to evaluate the

research, the major elements performed were a

system developers. The results of this study

provides summaries of the case study data. A
DOD~STD~2167 is also documented.
developer interface model.

intelligence-{Al) systems and postulate a software acquisition model.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

software development process for artificial
To accomplish this

literature search, a case study analysis of

26 knowledge based system (KBS) development efforts, and consultation with experienced Al

are presented in a two volume report.

Volume I presents observations made during the analysis of KBS software developments and

comparison of the KBS development process to

Volume II discusses a KBS process model and customer/
A comparisoa of the postulated model with DOD-STD-2167 and
DOD-STD~2167A (draft) is made in terms of activities, products, reviews and baselines.

20 DISTRIBUTION / AVAILABILITY OF ABSTRALT

B uncLASSIFIEDUNUMITED [T SamEe AS RPT) DTIC USERS

21 ABSTRACT SECUR'TY CLASSIFICATION
UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL

22t TELEPHONE (Include Area Code) | 22< CtF(E SYMBCGL

RICHARD M, EVANS (315) 330-3564 RADC (COEE)
OD Form 1473, JUN 86 Previous editions are obsolete SECURITY (LASSIFICAT:ON OF Te.S sy
UNCLASSIFIED

"" 'qsa, J:lrp\. o u;
'4.:.’«. .'Ip‘ !\ :ﬁ\h'iﬁh

Y
o0y

LR
i
b

%
5

v oyt
P
38

L f‘r~l'~(‘ 5
I.'(',‘i'
e
S 5k

{\
hY

YA
el
‘-‘-.' N

vk :-'.*:.‘.‘_ e ‘s Al
.' "ll ‘l
N
s

:'$|
PN
NN

4!

)

{'u,\ h Y
Sy

s

<

‘YA S
l‘l- ."’
<55
f..}'.l

2.

»
v,
Py NN

ah

J "-)‘n"y‘

o’
of,
4
'd

-

resLl
b

: T o A B
X~ L....L.

o P . . GRICILPL I S P B g i 0 A T B AT AR WXL oI
s ..wn.. u..._-..u.,, e S Va 2t Sr Tl A O R T hi,w..--.,n. N ~ SRS @l @
PEF g Uk & THE

%
3 s . - &
« e, .r& tr A A o] l*.! e v-v\‘--b-u“- Pl -Ir-..- Lt I R IR T R O S

\J
UNCLASSIFIED

UNCLASSIFIED

R TS P T ST S S o O R S W RO PO T R R T MW LW L W LW Le LW a R UW LU WL L U U U 2 TR IO G g g Bl daf) S0 e 8t p"

o,
R

{
PR,
. @
?’ ‘ +
3:,'1‘:; :
F""\.‘F)
Contents 24}
s IR
Volume 1 ;Q’ Y
s
1 Introduction 11 ‘»,
1.1 Problem Definition 000000 11 42l
1.2 Solution Strategy [1 S
R
2 Data Gathering Approach 21 :.Q.j
2.1 LiteratureSearch 2-1 Nl
22 CaseStudies 2-2 ¥z
2.2.1 Questionnaire 22
2.2.2 Selection Criteria for Cases Studied 2.2 '_\':;.r:
2.2.3 List of Participants 23 - ‘::
2.3 Other Methods 23 A
231 EIAWorkshop 23 ;,_:"
2.3.2 Expert System Conference 25 ?
2.3.3 TI Satellite Symposiums 25 !
2.3.4 Expert System Technology Transfer Seminar 2.6 3._‘:. :
235 Consultation 26 :;.}?“'
2.3.6 Research at SDI Library, 26 v_'";&
2.3.7 Coupling with DOD-STD-216T 26 . @)
ALY
o
3 Observations 3-1 '.j'-.';:]
3.1 Conventional Software Approach 31 ::';:: 3)
3.1.1 Standard Waterfall Approach to Conventional SW Development . . 31 ::_-ﬁ::"-":
3.1.2 Reported Problems in Conventional Software Development 3-2 Kz
3.2 Al Software Approach 36 'j\:\
3.3 Generic Description of the Al Development Process 3-7 ',:2{“
3.3.1 The Expert System Model 37 -'Q{:;:
332 TheDECModel } & Pa
3.3.3 The Dipmeter Advisor 39 .
3.3.4 Other GenericModels, 310 '.-:.:
3.3.5 Generic Definition of KBS Developments 3-10 -':.::-::
3.4 Description of KBS Development Characteristics | 3-11 __.__f:x-: :
34.1 Knowledge Acquisition 00 3-1 ';'_::
34.2 Knowledge Representation 3 (E SV
343 Reasoning Methods 0000 31
3.1 Redundancy Exploitation
3.4.5 Development Environment
3.4.6 Exploratory Programming Style
347 Rapid Prototyping.
3.4.8 Small Development Teams
349 User Involvement

' " A d - \. \. \. \' S' . \- \.
\)*'\'N':,\':_\"_:\,::&

- Cal L]
PIAOI I Vi T A h. WY AN
SRS ~ W
R e R e

PSS A : A

o af 0,8 Tap Taf ol du St Wb 28 tab. dab B V5 640 el 4ol Sail ead ua ko byl Sl tall Sed ab 0%k Saloal i b LA al Syl bl ol Solatull Sk St ol LV:
%
'-.","
L]
2
)
K :::
3.4.10 Documentation Produced 3-23 L
3411 Testing i e 3-25 . 4
3.4.12 Management Control Mechanisms 3-27 "::‘:
3.5 Difficulties in Developing Al Systems 3-28 Wyl
3.5.1 Al Software Development Problems Cited in the Literature 3-28 o
3.5.2 Al Software Problems Observed from the Case Studies 3-29 e,
3.5.3 A Comparison of Al and Conventional Software Development Problems 3-31 2.
5
Case Study Results 4-1 1".‘,"‘.
4.1 CaseStudy Data. e 41 ':
4.2 Evaluation of the Case Study Data 4-29 R
421 Common ASpects i 4-29 N
422 Relational Trends 4-30 - Y,
4.23 Distinguishing Features 4-31 oAy,
4.3 SDI Related Issues/Implications 4-32 :,.'
(]
Synopsis 5-1 _I
5.1 Comparison of KBS Development Process to DOD-2167 5-1 gl
5.2 Interface of Conventional and KBS Software 5-2 -
5.2.1 Management Perspectives. 5-2 _'f:
5.2.2 Implementation Perspectives 5-3 e
5.2.3 Testing and QA Perspectives 5-4 ;_
5.2.4 Comparison of Development Techniques 5-4 :T_“__
5.2.5 Integration with DataBases 5-5 o
5.2.6 Management Implications 5-5 :‘_:
5.3 Applicationof AltoSDIIssues 5-5 o
k3
Bibliography BIB-1 o
NN
Glossary GLO-1 N
ox
Acronyms ACR-1 ®
Software Development Problems A-1 \ﬁ
Al LifeCycle. A-3 e
A.1.1 Requirements A-3)
A.1.2 Management A-3 g
A13 Acquisition A-3 -_,:
A.1.4 Product Assurance A-14 i
A LS Transition . . . L e A-4 . _:'.
A.1.6 Life Cycle Problem Tables A-4 N
A2 Environment A-16 ;
A.2.1 DisciplinedMethods A-16
A22 Laborintemsive A-16 b
i ®
N
R R AR e S e E’i‘l:';:-:‘.'é:~‘:~'~:<f.1$§
S A

B I T T T T ¥ YT T S T T o TS TN T T e T X Y vor g
0 _ a n ;
‘:: ot
M £
I ﬁ'.
)
W o
“ a4
; , P
: A23 Tools, A IS A
" A.24 Reinvention A 16 @
o A.25 Capitallnvestment A-1T '
::‘ A26 Environment Problem Tables A 17 \ "4:;
A.3 Software Product A-28 s
L A3.1 Doesn’t Meet the Need A 28 "u.l'
A3.2 SoftwareMetrics A 28
j:: A3.3 Design Attributes L A 28 iy
) A3.4 Documentation A 28 -f.'S
N A.35 Immutable Software A 28 o
{:: A.3.6 Software Product Problem ‘tables A 29)
A4 People A1 %
» A4 Skills A 11 ..,.'
A A4.2 Availability A-4) .‘
M A43 Incentive A 11
:: A44 People Problem Tables A 41 ‘
B Questionnaire B1 :.\
1 NON
‘ C Case Summaries C 1 :""\-
“ C.1 ARINC Summary oo C-1 t
C.2 Boeing Computer Services Summary C2 L
g C.3 Boeing Military Airplane Company Summary 3 b __" ‘
W) C.4 Brattle Research Corporation Summary 5 by
2 C.5 Carnegie Group Inc. Summary C6 ::g)
L~ C.6 Digital Equipment Corporation Summary C 7 R 4
“ C.7 Expert Technologies, Inc. Summary C R 0
C.8 Frey Associates, Inc. Summary C 10 j
: C.9 GTE Data Services Summary oIl m
y C.10 IBM Federal Systems Group Summary C-13 ‘:SK
s C.11 Inference Corporation Summary (Authorizer’s Assistant) C 15 A
s C.12 Inference Corporation Summary (Medical Charge Evaluation Control) Cr § X
2 C.13 Lockheed Aircraft Service Company Summary (Expert Software Pricer) . . . C-19 .
o C.14 Lockheed Aircraft Service Company Summary (Frequency Hopper Signal Identi- o
R fier) o2 oo
3 C.15 Lockheed-Georgia Company Summary C 22 :{f _;j\
C.16 MITRE/Bedford Summary ¢ 23 .
C.17 MITRE/McLean Summary , 24 .“
. C.18 Northrop/Aircraft Division Summary 25 =3
- C.19 PAR Government Systems Corporation Summary 27 :-::-
. (.20 Sanders Associates, Inc Summary QA :‘::;
S C.21 SA&E Summary (Decision Support System) ¢ 30 s
N C.22 SAXE Summary (Scnsitive Financial Analysis System) . .. 3 e
] C.23 ‘Texas Instruments Inc. Summary ¢ 32 .
! :
: i
: X
: iii M
__.
~
%..‘ @‘&"m -." "’ ?.' '\.- \'_ \‘ . } « E;' -\ "Q&\ » :}::;:‘-\' $
h'n'ﬂ o n"‘.'l, .'l PO 0 ¥, \ A A Tn U nR \‘.\ J‘ A \" A : \A.\.‘:E‘;."‘-.':SL

RN L TN Y T)

1'p aip $%g #*

2.2.3-1

3.3.5-1
3.5.1-2

4.1-1 .

4.1-2

4.1-3

4.1-4
4.1-5
4.1-6
4.1-7
4.1-8
4.1-9

4.1-10
4.1-11
4.1-12
4.1-13
4.1-14
4.1-15
4.1-16
4.1-17
4.1-18
4.1-19
4.1-20
4.1-21
4.1-22

4.1-23
4.1-24

A RAT A

RN AR o8 @at b §o v o

h
List of Tables e
Volume I ;. A
List of Questionnaire Respondents 24 "'I:.::
et
Generic Model Phases 310 o W
Artificial Intelligence Software Problems 3 28 ::h:?'g’
ARINC Research Corporation - System Testability and Maintenance .‘
Program (STAMP) 43 ':j'u
Boeing Computer Services - Strategic Force Management Decision Aid & h
-4 he%
Boeing Military Airplane Company - Automatic Target Recognition L 2
(ATR) Program 45 R
Brattle Research Corporation - Text Interpretation System . . . 16 z"::“'t“.
Carnegie Group, Inc. - DISPATCHER Project 4-7 o Y
Digital Equipment Corporation - XSEL/XCON System . . . 1-8 "0';‘
Expert Technologies Inc. - PEGASYS 19
Frey Associates, Inc. - THEMIS Management Information System 110 {:E:?:
GTE Data Services - Central Office Maintenance Printout Analysis and f'_;‘._‘;-.“
Suggest System (COMPASS) 11 RN,
IBM Federal Systems Group - Fault Diagnosis and Resolution System :;;'f;:
(FDRSY 102 s
Inference Corp. - Authorizer’s Assistant S 113 :'::‘:a.
Inference Corp. - Medical Charge Evaluation Control (Medchec) 114 -\.‘;:::)
Lockheed Aircraft Service Company - Expert Software Pricer (1SP) _\:';:';
4-15 e
Lockheed Aircraft Service Company - Frequency Hopper Signal ldenti- % '
fier {16 NS
Lockheed-Georgia Company - Pilot's Associate = 117 :;:{:
MITRE Inc. (Bedford) - Liquid Oxygen Expert System . . . 11 Aot
MITRE Inc. (McLean) - ANALYST | 119 o
Northrop/Aircraft Division - Expert System for Target Attack Seqt.enc- °
ing (ESTAS) 120 GASCS,
PAR Government Systems Corporation - Cost Benefit of Tacticar Air '52;'.& '
Operations (CBTAY) S t 2 RIUN
PAR Government Systems Corporation - Duplex Army Radto, Radar ::;;
Targeting Decision Aid (DART) 122 '}';
PAR Government Systems Corporation - See and Project Enemy Ac- f.'_'-'\-‘._
tivity (SPEA) 42 RS
Sanders Associates - Test Assistant (TESS) . 124 ::'.-:::'
Schlumberger, Inc. - Dipmeter Advisor System . o 4 25 ::,::.
Software Architecture and Engineering, Inc. - Decision Support Sy ’ '.'
tem L L 106 o .
3:;2* .
o
v ::":
" N A A T o T N . . F*.._
L O A A YA R N
NG A NSRS NS E AR BNAA RSN SRR AN SN R

4.1-25 Software Architecture and Engineering, Inc. - Sensitive Financial Anal-

ysisSystem L. 4-27
4.1-26 Texas Instruments Inc. - Production Scheduler Project 4 28
A.1.6-1 Conventional Software Requirements A-5
A.16-2 Artificial Intelligence Requirements A-6
A.16-3 Conventional Software Management A-T
A.1.6-4 Conventional Software Management (Cont.) A-8
A.1.6-5 Artificial Intelligence Management A-9
A.1.6-6 Conventional Software Acquisition A-10
A.1.6-7 Artificial Intelligence Acquisition A-11
A.1.6-8 Conventional Software Product Assurance A-12
A.1.6-9 Artificial Intelligence Product Assurance A-13
A.16-10 Conventional Software Transition A-14
A.1.6-11 Artificial Intelligence Transition A-15
A.2.6-12 Conventional Software Disciplined Methods A-18
A.26-13 Artificial Intelligence Disciplined Methods A-19
A.2.6--14 Conventional Software Labor Intensive A-20 ..
A.26 15 Artificial Intelligence Labor Intensive A-21 ,:-:_._:
A.2.6 16 Conventional Software Tools A-22 NN
A26-17 Artificial Intelligence Tools A-23 "v'_f{;&
A.26-18 Conventional Software Reinvention A-24 .}‘:\v‘J' ‘
A.26 19 Artificial Intelligence Reinvention A-25 T e
A.2.6-20 Conventional Software Capital [nvestment A-26 E.'f., ;
A.2.6-21 Artificial Intelligence Capital Investment A-27 PN
A.3.6-22 Conventional Software Doesn’t Mcet the Need A-30 :_.:':\)
A.3.6-23 Artificial Intelligence Doesn’t Meet the Need A-31 .‘::.r‘;:-)
A36-24 Conventional Software Metrics A-32 e
A.3.6-25 Artificial Intelligence Metrics A-33 =‘
A.3.6-26 Conventional Software Design Attributes A-34 Al
A.3.6-27 Conventional Software Design Attributes (Cont.) A-35 ":\‘_',:
A.3.6-28 Artificial Intelligence Design Attributes A-36 :.\,-::‘_f.'
A.3.6-29 Conventional Software Documentation A-37 S
A.3.6-30 Artificial Intelligence Documentation A-38 .90
A.36 31 Conventional Software Immutable Software A-39 j:'_'.}::\
A.3.6 32 Artificial Intelligence Immutable Software A-40 -:'_'_-',‘.’,
A4.4.33 Conventional Software Skills A-42 o :“J:::
AA44-34 Artificial Intelligence Skills A-43 e
A.4.4-35 Conventional Software Availability A-44 r'y
A.4.4-36 Artificial Intelligence Availability A-45 P,
A.4.4-37 Conventional Software Incentive A-46 ';::
AA44 38 Artificial Intelligence Incentive A-47 :f::

*Z

" 0 ."IJ"’ -’.-
§fﬁ$~:.r:" ', .": 'n:, d
SIS NI

1 0 d Va8 0ah al Na Vel G2 .80, 8° 000 0,0 0" -0 4 e ot o8 'l a'h a4 ¥;

, 190 0's 40 i T TRTTCWIVT 'y
RS
Noda
:,':.r:'_.r
ol
Contents N
Volume 11 :-:-:'*‘ '
A
1 Conventional Software Development Methodology 11 :ﬁ"
1.1 Description of DOD-STD-2167 11 e
1.1.1 Disciplined Software Development 1-2
1.1.2 Activities, Productso 1-3 S
1.1.3 Reviews, Baselines 1-5 Ny
1.1.4 Quality Evaluation 110 :::;}ﬁ:-
1.1.5 Reserves, 1-12 ::-f-‘::‘
1.2 Shortcomings of DOD-STD 2167 1-12 * 3
1.2.1 Software Problems Unaddressed by 2167 1-12 ,~ '|"‘
1.2.2 Open lssues and Revision A 113 o A
1.2.3 Sequential Nature of 2067 114 T
1.3 Evolution in the Conventional Software Development Process 1-15 3 :"97
1.3.1 Recognition of Prototyping 115 A,
1.3.2 Use of Off-the-Shelf Software 116 r_v_;._w.';, "
1.3.3 Compatibility with Al Software Development | 16 :::_.-_E’;.
A
2 Properties of a KBS Development Model 2 1 RERG0
2.1 Provisions L 21 v “;.
2.1 Visibility 2-1 r;_;—\:‘_ f
2.1.2 Control 2-3 ,-::.-:.- '
2.1.3 Flexibility 2 4 %
2.1.4 Compatibility 2 4 ;\'\t:';
22 Composition 2-5 A
2.2.1 Activities Identification 2-5 ,s._‘_ A
2.2.2 Documentation Needs 2-9 RN
2.23 Configuration Management 2-12 A
2.2.4 Testing Approaches 2-13 ;:.",
2.25 Quality Evaluation 2-16 AN
2.26 Contractual Mechanisms S 2 18 -9
2.2.7 Iuterface to Conventional Software 2-19 :::-':-""
2.2.8 Interface to Systems Engineering 2-20 -::::::
LYY
LS
3 Derived KBS Models 31 S\
3.1 Initial Model Based on KBS Development Characteristics 31 o b
3.1.1 System Definition 33 :t-':::
3.1.2 System Implementation 34 :}_.::;
3.1.3 System Operation 35 ,.::.:,,
3.2 Postulated Model Encompassing DOD Needs b6 Jaety
3.2.1 System Definition o 36 ®
3.2.2 System Implementation

]

N LS

ot SRR GESA SN

- -
gty 1 A » AN
. -l-l"-‘ln ey c"u, . “' 'N* o *’

3.23 System Operation 3-20 NG
3.3 Advantages of the Postulated Model(s)
roblems 3-20 ot

3.3.1 Resolution of Common Software P

3.3.2 Meets DOD Management Needs 3-20

3.4 Comparison of KBS and 2167 Interface Models

341 Overview 3-21
34.2 Products 3-21
343 Reviews 3-24
344 Baselines 3-27

4 Recommended Studies/Activities

1
4.1 Model Application Case Studies 4-1
4.2 Technology Studies 4-1
4.2.1 Critical System Functions 4-1 N 1'.".1
4.2.2 Risk Reduction Efforts, . .. 4-2
43 Engineering Discipline. 4-2

Bibliography

Acronyms

Ly

N ,‘&)\‘:ﬁ \-: "' S

............. 3-20 »

4 %

r
5

o KN

............. 3-21

Lol)
=
b

S AKX,
Nus
Al

A XAAAL
NS"\
?)'

s
i."

| o ¢
055

2

.'& :

E

[

—

.‘; -

*d

"‘.{\ 5 %)
<

»
a
o
Pt
T
oy
o

%

ity
[S
5

-" " 1"- /' _l' 7
| ’l':"n"
s.l £ "t A

v

l""
RS
I

o«
,l
A

) "",

5

Al
« :.q

.,,
A
1 3 .E

5
h Y

SN |
’

<
x)

b4
P

P
N
{4.

LN T TR
22

t.:a.:-.:*.ﬁ'-,s(

PN W B

4": ‘.".' “- .'. "- R
P AL A
PR R PO
f.-’.’(.-.- ‘\4

:)." ARERKTKYR RO Ry S g s el

L Ay e DAty o CASCA RS AN A b are ovg gt Q

‘1.' .'l'\sx L] -l
il el

List of Figures

Volume I1
Software Development Cycle (per DOD-STD-2167)]
Software Development Cycle (Cont.) (per DOD-STD-2167) 18
Waterfall Software Development Model 114
The Prototype Life Cycle Model 1-17

s

‘;;'_' ‘;I‘e" -

n--n-l-r—n—
D R e

N
2]
‘s
-" .
Yov

Top Level View of KBS Software Development
KBS Formal Test Approach 215

RIQN
[-
p—
R
T T
you ooy
Tty

t

Top Level KBS Process Model 3

Detailed KBS ProcessModel 3

Sample Hybrid System Organization 3-
3
3

_‘
A
li

A)
MNCAC A
W

|
DR W N e

KBS Developer/Customer Interface Model
Interface Requirements Specification Qutline
KBS Segment Specification Qutline
Software Development Plan A Outline |
Functional Design Document Outline
Software Test Description/Procedures Outline
Functional Product Specification Outline
Software Test Report Outline

»
o
‘v'e

T

ree
a

LI

i

o

A Yy h
s

o

« 5
v 5.

wwwwuclawwwww
»

t
— e (D QO =]
O

3
I

—

|
)
P
v,
]

-..;4
XN L
Tels's [A A

."-.'»"-, .

2
L 4
.

A

X o
l'l

=&
. -

i
L4

27

'x{‘

o+ 4
2

4

el §
- t"'l "l'._lq._ . L

e NN

LA A AP
"l“n"’-'& f"(". R

7

PPN
NSNS
I AN

=
Pars
'l"l'

Lo

‘¢
- .f g

.
[y
[

, 7

R I\-I

L2

oy 1.1.4-1

By 3.4.1-1
r 3.4.2-2
3.4.3-3
! 3.4.4-4

NN

I

S’

~

-
-
-

-

¢

TR

w
PLEL

~;

- - o - -
3 T T -

-f"‘.
-

! "\"

l‘. l" A Q‘ 'Ql.;’g‘ \

DR

VIO VIR A) R - » 4 - .
9 vag “of ap-¥ e ‘2') 00 8' gv g 2% avgale B8’ Ga Ba _bet e

List of Tables

Volume II
DOD-STD-2167 Soft vare Quality Evaluation Activities

Mapping of Phases to Processes
Mapping of Productso
Mapping of Reviews and Audits
Mapping of Baselines/Configuration

A IEAENIMNNN N A N N I N A R AT R o
5 » "J'“ N ..- AALOA AT AN a'.-"q-"'f:'.r"(‘"/'.-‘p"?"
I~ WYy A '(e A e N e e e
S T N S S AR O, M A AR i
Aol < g . i

1-11

3-22
3-23
3-25
3-27

YN

E's

Y

7.7

[4
-

List of Contributers

Case Study Participants

Marilyn Aglubat
Sam Ashby
Virginia Barker
Carlos Bhola

Dr. R. P. Bonasso
Rodney M. Bond
Douglas Clafin
Stan Coffman

P. R. Deweese
Linda Dudding
Vicki Florian
Kimberly Freitas
Kermit Gates
Terry Ginn

Gary G. Greenfield
Carl Gunther
William B. Harrelson
David Harris

Dr. D. F. Hubbard
Ted Jardine
Elizabeth Kooker
Robert Lough

Jim Montague
Edward Orciuch
Laurent Piketty
M. J. Prelle

Jack Rahaim
Ethan Scarl
Anthony D. Vanker

Reviewers/Consultants

Dick Cloutier
Terry Ginn
David Harris

Dr. Charles Rich
Tom Royer

The following people have contributed to the Artificial Intelligence Software Acquisition Program
(AISAP) study and final report.

Northrop Avionics Division

Boeing Military Airplane Company
Digital Equipment Corporation

Expert Technologies, Inc.

The MITRE Corporation (McLean, VA)
ARINC Research Corporation

Lockheed Aircraft Service Company
Lockheed-Georgia Company
Lockheed-Georgia Company

Lockheed Aircraft Service Company
Software Architecture and Engineering, Inc.
Inference Corporation

PAR Government Systems Corporation
Sanders Associates, Inc.

Frey Associates, lnc.

Inference Corporation

Brattle Research Corporation

Sanders Associates, Inc.

Carnegie Group, Inc.

Boeing Computer Services

IBM Federal Systems Group

Northrop Avionics Division

Texas Instruments, Inc.

Digital Equipment Corporation

Inference Corporation

The MITRE Corporation (Bedford, MA)
Digital Equipment Corporation

The MITRE Corporation (Bedford, MA)
GTE Data Services

Sanders Associates, Inc.
Sanders Associates, Inc.
Sanders Associates, Inc.
Massachusetts Institute of Technology
Sanders Associates, Inc.

;- K"' '."I.‘.‘ '/
k, f-'v‘ "' .'r)

"-" - r.‘r
¥ g

L
LAy

[
o

s

Y, 1)
"{ "

RS
LA 4' <-‘

“y x %
<&
‘i'.‘b'-’.

f"f

555
A

ﬁ:,&‘ 't;.'l ‘

Preface

In August 1985, the Rome Air Development Center selected Sanders Associates, Inc. to evialuate
X the software development process for Artificial Intelligence (Al) systems and postulate a software N
a acquisition model. To accomplish these objectives, Sanders devised a strategy consisting of the \

following major elements:

i
Y

o Literature review;

)
5 0

e e Case study analysis; and

-
-
AN

=5
s
"’

.-"

¥
e o Consultaiion with experienced Al system developers.

The case study analyses represent historical data on 26 knowledge base system (KBS) developinent !
efforts. Because the case data focuses on KBS software, the acquisition model developed pertains)

to KBS efforts.

The results of this study are presented in a two volume report.

N made during the analysis of KBS software developments as well as sumimaries of the case study
. data. A comparison of the KBS development process to DOD-STD-2167 is also made.

Volume | presents observations o

B

5 o o
[4

':g.' Ly

Volume II presents a KBS process model as well as a postulated customer/developer interface
, model. A comparison of the postulated model with DOD-STD-2167 and DOD-STD-2167A (draft)
is made in terms of activities, products, reviews and baselines.

LR
[2o
- e e

wy e

)

o
AR
XA

-
h

~"-'(n’lr‘_-

2
-~
S"'

!
¢

Y
LA™

e

.
e

)

.

A Ay
G
s

.

YA
o

LR &4
-

2,
:}-

b Y
f

|

Y BASAN SEH(RTE SRR RCRAR S, A SRR X!
\ ‘.L:‘.:\.\'\f :.,:A:. . .,. E 3 \\3‘.‘\},\ :'\, &‘)_-. : 53 \{'- ! :’: . ,\ \ AR ‘v-:;\' . -.;::‘_::
‘-' RN R R R oot A *i'v‘-i\'.f g N

t: WL ™ WXL YR (NN G HURURLY Jo W) L U LN WY S TR TN, L8 LIPS At f 08" S AN RN SN g O avh Al a0kt . a <ol -:h
i P
Wy fn..\
L
y o
R o
:,0 et
9 SECTION 1 2
i.l . f{;‘r '
s Introduction AN
\ :_‘:\,
\ .":fY’
» ! A S
W Y
K>, 1.1 Problem Definition]
:) .I'.\-:
\ To date, many Artificial Intelligence (Al) systems have been developed in university and other ~
N research environments with relatively few oricnted towards Department of Defense{DOD) applica- S_:;
tions. The scale and complexity of these existing systems is substantially less than that anticipated = 2
N for the Strategic Defense Initiative (SDI) Battle Management/Command Control and Communica- ey
. ., . . . '
! tions (BM/C") Technology Program. In addition, the manner in which these Al systems have been :::c:.
B developed is largely foreign to the DOD software acquisition process (e.g. DOD-STD-2167) . For . %)
: instance, conventional software issues such as design reviews, programming languages, documenta- f':v
tion, quality assurance procedures, testing and other methods commonly used in military system X .
a acquisition are nonexistent, inappropriate or radically different in the Al software development e’ S
o process. Because DOD envisions a need for Al system technology to address many components of N
g the SDI, a clearer understanding of these differences is required. Namely, new policies, procedures, ‘;3-
! standards and contracting mechanisms must be in place to ensure a high success rate in acquiring -~ ’
ke, Al systems in general. Consequently, specific stated areas of interest to DOD are: %
:
=
\ o Analysis of the Al software development process to determine unique characteristics and needs; NN
, N
: e Development of a model(s) for Al software acquisition that satisfies both military needs and ‘_::
N unique Al requirements. The model should at least address the following areas: ~ X
v o' ‘
— documentation standards; -
"' - review procedures; :'_\$ ‘
AN
‘ -- rigorous testing methods; and .
A N
:' — contract mechanisms. 2
| T
e Analysis and specification for interfacing/integrating Al and conventional software languages ’:
and processes. o

b
1

n
Ty
' The Rome Air Development Center (RADC), Air Force Systems Coinmand, at Griffiss Air Force T
o Base, N.Y., was tasked by DOD to respond to SDI needs concerning technology critical to /3Af "’ :::: i
X Having solicited public response in the form of proposals, RADC selected Sanders Assuciates, luc G
e d

to perform and report on a specific study consistent with DOD interests as stated above.

P
L)

L4

»

S A oy
i
v

[4

1.2 Solution Strategy

ya
7
R

To address the DOD needs as delineated in the previous section, Sanders proposed a two phase
: approach. Phase 1 focused on an analysis of the Al software development process The analysis

55

L4

i-1

-
AR
7

l‘ .

o«
hJ
2.4

2,

'w\»

. . e
SRR
‘ \ ~ o "

*.\'-‘\ '-~

h Y

.n

'\-

v eTa

¥ ..‘l.." l'l. O J"-l 1

]
L]

. Ty wUw "o ¥ W v ", R W I A I o Mg o W P W T W Wi M ¥ i i MmN ¥ \\N.\..k.l. -|-§'“.“
'*\
ool
2
oG
1.2 Solution Strategy :ﬁ (
SN
Ay
. . o
consisted of collecting case study data for Al systems which had either completed development or i)
were well underway towards completing a prototype. During the Phace I data collection activity, B
it was learned that case study data was only readily available for Knowledge Based Systems (KBS) .:" v
and not generally available for other Al application areas (e.g. signal processing, natural language ;::\ o
processing, etc.). Because of this, the scope of the study concentrated on KBS. Phase Il focused :\J“-'
on the development of a KBS software acquisition model. Issues germane to KBS and conventional t: o
software interfaces/integration are considered to be a part of both phases.
Lk
In Phase I, the analysis effort included an extensive literature search/review, detailed case study \"?\ '.|::
evaluations and an assessment of DOD-STD-2167. The basis of the adopted strategy was: :‘.“
{
"‘Q'
e Extract from the published literature as much information as possible concerning KBS sofltware ":2"'!".":('
development techniques and characteristics; R 4
\J i|“
¢ Design a comprehensive questionnaire to extract data from experienced KBS software builders %{2‘
on specific systems,; ; 0
<
. . . . e
e Consult in-house expert system builders to enhance the understanding of the material re- ,..y";:
viewed; e
e Study DOD-STD-2167 methodology for use as the basis for defining deviations appropriate :::'_ti}‘-'
for KBS software development. '."_.;}‘:
::5.2'.\
This approach enabled the study team to meet the requirements of Phase I. Specifically, KBS ;{:
software development characteristics were defined and deviations from the conventional software Y
development process were identified. E-’FSF_.‘
The Phase | approach also resulted in the collection of data pertinent to the Phase I effort. Namely, .\\::t; b
case study analyses, particularly in the area of expert systems, led to the identification of KBS areas Q’\k
critical to the SDI effort. Case study participants also provided substantial information concerning 'S, N\
“lessons learned” which proved to be invaluable in terms of defining a standard approach that fé
avoids the pitfalls already experienced by others. n.i Q
el
Specific goals for Phase II, the final phase of the software project, were to define a model that «’_"r-:fn‘
specified acquisition and development approaches for Knowledge Based System applications. The :}};.!'g
models developed define the activities, products, reviews and baselines for the development of KBS e
software. They also identify management needs for visibility and control over developing products .
as well as the required delivery of quality products within cost and schedule. DA
DL
Additional activities designed to satisfy the goals of Phase II included a strong coupling with the SN
DOD-STD-2167 Revision A activities, gaining insight into software quality metrics research and [-:-}'.:i:
development and continued data collection as new data sources were defined. The coupling with A
the 2167 Revision A activities was necessary to produce a model which is compatable with and 9_,,_,_'.’
interfaces to the world of conventional software development. '_.-._-:‘_..-"
o L
The resuits of the Phase Il modeling effort are documented in Volume II of this final report. The ';:j.';
remainder of this report is ontlined as follows: "-:"-:._-;
"-\.-".
e Section 2 contains a discussion of the methods used to gather all available data concerning - (_.. .
the KBS software development process. :-}f:" y
AN
RS
R
1-2 o
O
I Nt W T S S S N e PL S S CP RS T SRS SN S L T SO iy e I T o -\\._ﬂ-\-\\-\'h'__\'
G e A O SR S O B AR A AL
T e e o o T e e T e T A NS A
TN A R IR,) Rt YA,) e ot PO, RO VLAY it AL N

RS 00 a0 4 2M AR’ aVA" M PR’ U’ i a® Y .
'y oy § %0 [24 a 2™ 1A a0 ARt s e gt et by - U bt LA 4l Y ‘Rt Rl R g g ek ag ¢ . N ata,
B - > . ‘ . 4 . - - ~ - . -

[}

y

"
1?: . ":,)
;I' . P
,.:: 1.2 Solution Strategy de i
" o
Xy) |$'
e e Observations made through analysis of the data obtained aic¢ prescnted in Section 3. These 4-.
) observations pertain to both the conventional and KBS software approaches, including the > -
o:: difficulties inherent to both methods. e
y %t
:. e A detailed evaluation of the case study data obtained is contained in Section 4. Common y '
",'v' aspects and important features are highlighted. ot /]
1.

s OO0

e Section 5 presents a synopsis of KBS development methods versus DOD-STD-2167, conven-

'_ tional and KBS software interface issues as well as the application of KBS to SDI requirements L
)
» S
W o A list of references, bibliography, glossary, and a list of acronyms follow Section 5. ::'5. -
b, o~
} -
B, o Lastly, the report includes several appendices: ot
L
i':. - Appendix A details problems cited in the developient of KBS and conventional software,; ‘
[}
DA - Appendix B presents the case study questionnaire; and NI
: PP p O
' (]
f‘ - Appendix C presents summaries of the case study responses. '::«
! AN
£
x)
N -‘.:f :
s N
" o~
oy
]

pof
‘-

e

l?'

Nae,
- ; ’ .
.. I.\’

..:L‘."; l&
¢ v Ve
.ss,a."_-.,s'

K

.

13

C4
s
AR
A

"
. *p
v 9%

LS 2]

by ‘v v
v
.

v

L
.
o

-y
o)‘(‘)

’
% ¥

-
x

,",:;;

%

.y A 3 4
TN,
oy
0y,

I ')
L4

1-3

::;{f

u\
P, \
n'n'l‘(\;\
-")"‘ o .r"-r" ".*‘ -

"\"-m NN,

.

SECTION 2

Data Gathering Approach

2.1 Literature Search

The data gathering effort began with a comprehensive literature search extending to both on-line
and hardcopy sources of information. The computerized DIALOG system' was used to access the
following databases:

INSPEC (Information Services in Physics, Electrotechnology, Computers and Control)

ABI/Iaform (American Business Information)

The Computer Database

NTIS (National Technical Information Service)

The DROLS (Defense RDT & E On-Line System) search service was also used to access the DTIC
(Defense Technical Information Center) database.

Keywords pertinent to the study were used to identify articles from the various databases for further
inspection. Numerous articles covering a variety of relevant topics such as artificial intelligence,
expert systems, natural language processing and battle management were ordered as a result of the
on-line search activity.

In addition to computerized search techniques, many hardcopy sources of information were reviewed
aueh as textbooks, conference proceedings and journals A complete annotation of all resources used
in the preparation of this document is presented in the List of References and the Bibliographs

The literature search was an ongoing process since its inception Nawmels, pacticular references
listed at the back of an article or textbook under review were often ordered. This ripple effecs
enabled the study team to obtain and review an exhaustive set of resources corresponding to the

subject study.

The other medium that was used for obtaining refecences and wnformation about Al development
wsues was the ARPA/USENET groups for Al inciuding both the moderated and unmoderated
newsgroups. Numerous articles, technical reports and conference proceedings were crdered and

reviewed as a result of references from the network discussions,

" DIALOG tnformation Services, Inc., a wholly owned snbsidiary of Lockheed Corp. ration

3

[
5 %%

s
o SN

L)

8 "t.,'t LY
N
v

o
- ",v

<.
L}

.
7 Il

e
&
A

fod
' .,.n, <

1
<] M

.\}
..

Vaval
P I

2%

;o L
L L Y
’5‘.1.".’
PX N/

7
by

n‘!
@ -

{
l‘.
h

5“."‘

'."»;'. A
o
’.'{
NN

e

[

" S

')'i'l‘

1
LA A 4

« ¥
- ".'"l"
.

R
.';l‘v AR
x
e

® 5

TEESNS
W) ,_;._ £
LY .3

Iy

A
~ J',.

L
~

e

reegy A aa et
PO AR O A . - O U ' U 8 (o A A] AT PV PN

2.2 Case Studies

» R V) L ‘h‘_.';" N

o
[}
h
t []
2 2.2 Case Studies
N 3.2.1 Questionnaire
..
¢ . .
4 A comprehensive questionnaire was designed and used as the basis for conducting the AI/KBS
¢ system case studies. The questionnaire, contained in Appendix B, is divided into four parts:
N . ¥ F |
o 1. Introduction G
J ./-:J'
o 2. Background o
) Y,
4 3. Development Cycle, and "",
. ¥ N
¥ 4. Miscellaneous. o
W w0
N R
:‘ The Introduction put the questionnaire in perspective by discussing the concept of a software de- o o
\ velopment model. The Background section solicited general information about the subject system, ’_"," »
2 such as purpose, the number of experienced engineers assigned to the project and the extent of %
j success attributable to the system. The Development Cycle section contained the most questions :_\‘p '
x and was subdivided into the following categories: :_'&
. N
- '
N e General Procedures ‘;{. g
* X)
e Requirements Definition/Analysis %'}’,
v -._\}
Rl . 'f:‘-'
: e System Construction e
3 o
’ e
P e System Evaluation/Validation, and I
b, ?.
¢ Field Support. oy
)
. . . . ‘ ‘.
: The overall purpose of the Development Cycle section was to obtain detailed technical and man- &-.:
s agerial information concerning the scope, development and acceptance of the system. i: 3
Cu
. Lastly, the section titled Miscellaneous was used to capture data on lessons learned as well as aliow P
the respondent to include pertinent information that had not already been requested. 3
I Most of the responses received were in written form. In a few cases, oral responses were obtained ;bi
. using an interview or discussion forum with the respondent. In these cases, a written annotation "’:E
: of the discussion was generated and sent to the respondent to verify the accuracy of the reported RSN
‘ information. o
) 'I.‘:{l)
oy
, 2.2.2 Selection Criteria for Cases Studied f_‘s",-\-
\ CNC
) ."\ »\
Y Once the questionnaire was finalized, the primary goal was to obtain as many responses as possible. TR
Maximizing the number of samples available for analysis enabled conclusions to be drawn which : :
. more closely reflected the general AI/KBS community. Distribution of the questionnaire was also N
N A
: S
'- 2-2 N
2o,
b) .l . . ¥f"l"
AT T AT AT A TR AT T T T AT T AT it A AN ATt A T A e T P * o J'-f.f.l.‘f,'r'."’ o
A AR R A AN
N N N A A A, AN L, S : L . N O
I N R N ' ‘ .

L g

W,

X

pon
Yy
.'!';%
2.2.3 List of Participants tﬁ
&Y
A2
P
made to a wide variety of companies. In this wa , data was captured pertaining to diflerent N |
application areas and procedural methods for developing Al/KBS software. » -
. . - . o
The case selection process began by identifying two in-house KBS efforts. From that pomt, the :f::\r'
literature search and review uncovered many companies and universities that are active in i3S _\.':t:.'
software development. Because most of the universily efforts are experimental in nature and without :{:\"'
strict schedules for completing defined inilestones, the tendency was to concentrate on the industrial ':"\
sector. Companies that claimed to have built successful Al systems were of the most interest
oo,
In addition to the literature search, data was obtained on-line from the Commerce Business Daily ;:-5:*
(CBD) files concerning Al awards since September 1982. Based on the descriptions of the projects 4{*&‘ f
awarded, candidates whose work seemed most pertinent to the subject study were selected. In :::H' .
addition, discussions were held with cognizant government agencies Lo ensure appropriateness of Tt
effort and verify claims in the literature. '
AN
As mentioned in the following section, attendance at various workshops/ seminars resulted in many :::}‘ 3
contacts who were interested in responding to our questionnaire. Lastly, some of the contacts made ',h:\"
resulted in references to other sources active in the KBS arena. l‘:'l'\ f
' = X
4
2.2.3 List of Participants NN
AT
Y
Based on the selection process, over 50 companies/agencies were contacted Initial contacts were :-: '
generally made by telephone to introduce the study and determine whether or not the source :ij-
. L. o
was interested in participating. In the majority of cases, the response to participate was positive T e
Although more than 40 questionnaires were sent out to interested parties, many respondents were :.'-\ M,
prohibited from participating on the basis of proprietary information. Consequently, 26 completed ::.\‘
questionnaire responses were received. The list of respondents is shown in Table 2.23 | along PO,
with the name of the system to which the response applies. Case analyses are presented in Section '{f:f '
4 and summaries corresponding to the questionnaire responses for each participant are shown in }»".‘
Appendix C. N “.
'-'.\.-
A :
A
0y -I ",
2.3 Other Methods N
R
)
In addition to the literature search and case studies, project members attended several Al seminars L

to obtain information concerning the subject study. Individuals experienced in Al software devel-
opment were consulted as needed to enhance the team’s understanding of the discipline Lastly,
to gather data pertinent to the ongoing SDI architecture studies, a trip was made to the SDI Li-
brary in Falls Church, Virginia. These information gathering methods are described further in the

succeeding paragraphs. T
RO
.“ “.
. }_-
2.3.1 EIA Workshop AN
.-:‘-:.r
. . s*av «
During the week of 16 through 20 September 1985, a team representative was present at an blec. ®
tronic Industries Association (EIA) workshop entitled “Technology for the 199G's.” "This team B0
YA
,r
L] \ .'
N
N
I* X
2-3 NN
Nava
N R O e R L R T S LML TR , ‘.:-"Si
A A TN e N T A N N e e N R LN LT N NN LN AT N T N
N e e T L B e s
- A vy BTN VA S A R s S S A S S S R AR LR A S DA
TR A AT S O A A AR LR AT SRS (AR QAN S N Rt §

A
F.;. (\v’
B

J
2.3.1 EIA Workshop ~red
NS

oy

Table 2.2.3-1: List of Questionnaire Respondents N

" :.F':
4 NAME SYSTEM APPLICATION -,
-:‘ | . &
ARINC STAMP Equipment testability shell N

'l -

BOEING Strategic Force Management Replanning decision aid -

Decision Aid R

, BOEING ATR Automatic Target Recognition i:"::
[’ 'f_-'-)
o BRATTLE RESEARCH Unnamed Text interpretation oy
. CARNEGIE GROUP DISPATCHER Factory monitor/control 3 -.

3 B

¢:' DEC*® XCON Computer system configuration ,":“n
i ' "(
0 ETI PEGASYS Automatic pagination \
+ o)
t .
FREY ASSOCIATES THEMIS Natural language processor Y
kY YA
f. GTE DATA SERVICES COMPASS Fault diagnosis :f_?. ;
Y,
» IBM FSG FDRS Fault diagnosis e
Py pN
e INFERENCE Authorizer's Assistant Charge authorizations v
INFERENCE Medchec Fraud detection I

‘ LAS ESP Software costing :;Q
% LAS Frequency Hopper Signal Identifier Signal identification \-.P_}
LGC Pilot’s Associate Combat avionics assistant ‘i.
¢ MITRE (BEDFORD) Liquid Oxygen Expert System Fault diagnosis/detection ;E'.::
9 MITRE (McLEAN) ANALYST Tactical planning system 'r,‘::,:-»
- NORTHROP ESTAS Avionics decision aid 2%

PGSC CBTAO Tactical cost decision aid :‘:.-'_

PGSC DART Target decision aid :EE
PGSC SPEA Battle situation projections EBE
SANDERS TESS Test equipment assistant ~2.
: SCHLUMBERGER Dipmeter Advisor System Interpretation of logs ?ES
? SALE DSDS Decision support tool E:-E;
' SAKE SFAS Financial analysis system ":‘
; TI PRODUCTION SCHEDULER Manufacturing production scheduler :r".i
~
* DEC is a registered trademark of the Digital Equipment Corporation -

[)
-~
-

f R d
=
Pt

R . LN R
PR L. o' L . o - . - . " NE

. M . . . 7. 3 . e - Y o " - - . . R

e S % ot Lt e e e M LIRS e I R LI - e e, . . R . 3

..........

. .

bEab el ok A Ea PR B Doa B e 26, AR AL, Vet Sal aR VARt Sa b At Bl ASTAS g A Sad Nl o ure 870 o" 4 00 A%

e

2.3.2 Expert Systemn Couference

representative attended a tutorial on DOD Standard 2167 (hereafter referenced as 2167) and par-
ticipated in a panel forum on Al and its Impact on Currcnt softwarc Enginecring Prectices. In
particular, the panel concentrated on the Al software development process and 2167. Many [eatures
of the Al developient process were identified, most of which are ucither addressed nor compatible
with the most recent version of 2167. Specific areas of concern are discussed in 5 [of this report

In addition to the information obtained at the workshop, attendance was valuable because it led
to several contacts who responded to the case study questionnaire.

2.3.2 Expert System Conference

In October 1985, a team member attended a two day Erpert Systems Conference sponsored by the
Data Processing Management Association (DPMA). There were nineteen speakers, three of whom
were military personnel involved in Al applications work. Although the majority of the speakers
were from the industrial sector, several were actually working on Al systems for the military.
Pertinent topirs covered included:

e managing the development of large expert systeins;

o software engineering methods for expert system development;

o knowledge acquisition techniques;

o developing expert systems in Ada“; and

e a variety of expert system applications and putential uses.

The conference proved to be valuable in terms of obtaining information germane (o the subject
study and identifying potential respondents to our case study questionnaire

2.3.3 TI Satellite Syinposiums

Tearn members attended three Artificial Intelligence Satellite Symposiums sponsored by Texas
Instruments, Inc. (TI). The dates and titles are as {ollows.

o November 13, 1985 Anowlcdgo-Based Systems Amd Ther Applications

e June 25, 1986 Knowledge-Based Systems: A Step-By-Step Guide Lo Getting Started

e April 8, 1987 An Al Productinty Roundtable

Bach symposimm featured renowned speakers in the Al field For example, Dr. Edward Feigenbaum
(Stanford University) participated in all three sessions

Isach of these symposiums included descriptions of several expert systems in routine use_and hve
question and answer sessions. Resource materials were also provided including a gloszary of terms

and an extensive bibhography

Adiis o registered trademark of the 1S Govenunent (Al Joint Progras CHhce)

25
b
"y " qu.-\q.‘.-.\- TNttt ey - . R L
R R s S 2
R s R R A -

Ll o nfii™ at * ol * N/ -r -
CRMCIMCILICIL I A AN ARS AR 5 PR o™ et Re lat dot $u) T TN
- WY - e !

®
~

"
>,

l’n,

g

S P
XA NN
* . '.!..r.l.l(l]

a
ryw |

v
Ea N

[

[2
R R

2
s

. -
s

535
¥4
®
2.3.4 Expert System Technology Transfer Seminar }5’4
|
s
2.3.4 Expert System Technology Transfer Seminar :::
-
From May 12-14, 1986, a team member attended an expert system seminar sponsored by Digital ;._
Equipment Corporation (DEC). Practical strategies for managing expert system development were .;:-_:.
covered from three perspectives: strategic/business, technical and human resonrce;/ organizational. :'_:"1
The faculty included DEC personnel currently involved in expert system development projects. o
One of the more valuable facets of the seminar was a video taped case study, extending over the _-_;-

three day period. Alter each of the nine tapes were played, the attendces separated into groups to
analyze salient issues and recommend a course of action.

The materials from the seminar include the Guide to Erpert Systems Management manual which
presents in detail DEC's ten step management procedure.

2.3.5 Consuitation

Three individuals have been used as consulting resources since the inception of the project: Dr.
Charles Rich of MIT, Mr. J.T. Ginn and Mr. David Harris, both of Sanders Associates.

Dr. Rich, an Al research scientist at MIT, has provided guidance concerning our solution strategies
and reviewed selected materials generated by the project team. Dr. Rich is active in the field,
having published numerous articles, given many Al related lectures and having received several
grants from the National Science Foundation (NSF) and the Defense Advanced Research Projecis

Agency (DARPA).

Mr. Ginn and Mr. larris, both active in the development of Al software at Sanders Associates,
have provided continuous support in suggesting case study contacts, answering questions concerning
the Al development process, reviewing all project documentation and making recommendations as

appropriate.

2.3.6 Research at SDI Library

Two team members visited the SDI library in February 1986 to review SDI architecture study data

.' as well as other materials pertinent to the study. Although architecture study information was

. unavailable, several articles pertaining to the study in general were identified and ordered. "

K p g yme

BN ®
v, it
o . . e
" 2.3.7 Coupling with DOD-STD-2167 e
2 R
~ On two different occasions, team members met with the Joint Logistics Commmanders (JLC) agen- ;‘:_,
N cies concerning the Logicon, Inc. Revision A activities on 2167. The intent of this coupling was to 4...
- provide input, to Revision A concerning Al system developments and their applicability to the stan- Pt
e . o ‘-"
o dard. Since the Revision A draft publication was completed prior to the KBS modeling activity, any o
,:".: influence on the proposed changes to 2167 was minimal. 1t is expected, however, that the planned j\-:
" * release of Revision B will be a more appropriate Lime to closely couple KBS systein acquisition with < ::'_,
A the development model of 2167 and to identily mismatches requiring resolution. Because of the ’;"
i: nature of KBS versus conventional software development and a foreseen requirement to integrate —
‘
)

o

v

:} R Ty W oy NV Sy A e s R R T T I v

| -":‘.r -~ ..\-'\,,-\ .\.ﬁ\-ﬁ.- AN SN *-_"-_ -\(\N.q.‘.-; .:‘. CP M N '-‘..“"J'\:-\:-.'- I R T PR TR R

’\, LN S A SIS \J\:' AN -4'-\{ KA R A) “ -\'," > '.("‘J:\ i n\.(\ R "“'\.~\.- T ?._ '.'-“"-‘.\{'4}‘5\‘:""- “?:,:-'\'i.":‘ﬁ
P . N \ ’ N P, T S e .‘-“t

e e P
N N

a2y,

)

" at

. g0

- ab 2t

- ;g - L) -
L o

...\.'l\’\' \‘ L I .. \I s \
. 3 RhJ
AU N
SRR
f‘uclnvu--t.-nhifL 7..\..---#\
N

....- \ \\---%v g h a\-\ a i y . -‘ -

VAT NP YAt gt PN EY, <

o S L ey s W
RIS AN SNV B R R AL SN

) it s mportant That contimuous

s

2.3.7 Coupling with DOD-STD-2167

{BS modeling activities and changes to the conventional software
~
~
.~

o
e

PN,
WL
i

“»

"
&
vttt)

both into the same system (e.g., knowledge-based signal processig

development models defined in 2167
x
~

dialogue be maintained between

- "
>
Oy
»

e
o

T
o,
g
-
D

" ¥
-
o
.

)
s,
N

o
e
!.l.-, ‘o X)

y
p
b
4
'
'
'

NYr A ANy P P P Ry T P AU RN LR W -y i .

SECTION 3

Observations

3.1 Conventional Software Approach

3.1.1 Standard Waterfall Approach to Conventional SW Development

Large scale DOD computerized system developments, which began in carnest in the 1960°s, took
various approaches to the development of software. Although there were no formally defined models
for software development within DOD, there evolved an accepted approach that became the pat-
tern for software developments acquired under contract to the DOD. This approach documented
by |6, Boehm]|, {42, Metzger|, and others was characterized as the waterfall model for software
development. Although the terminology and the break points between phases varied, the models
essentially included the phases of:

e requirements definition;

o design,

e coding and debug;

o integration and testing; and

e operations and maintenance.

The Military Services, in the mid and late 1970’s, began to recognize the waterfall model asa proper
representation of a sound management approach and took actions to embody this model within the
various policies and standards being developed at that point in time. For example, both Air Force
Regulation (AFR) 800-14, written in 1975, and MIL-STD-1679(Navy), written in 1978 in luded
some level of representation of the waterfall model. The 1679 standard went even further and
included the engineering disciplines that were an outgrowth of the structured engineering revo ution
The coneepts of top-down design and structured programming were included as requireme s for
soltware being developed for the Navy.

Policies and procedures were developed to address the management and engineering problems
known to exist during the nid-70's. As the application of computers within DOD systems expanded.
problems with software continued to occur and the search to find wavs to unprove the scftware

development process was an ongoing one.

The next step within DOD in the policy and software development standirds arena came about
as a result of a workshop sponsored by the Joint Logistics Conunanders Computer Resources
Management Group. The workshop, held in March 1979, put {orth the reconunendation that the

¢

{'I %y

LA
3’y
(A

4
o
&
v
R

N,
\"

.,.
”: \-'{'_‘
7

e

i
L4
v&- S

AR RN
P e)
PR
N NNy W::'.
Ll g

A
»

RN
-\(‘.-\\\
BT e

L]
~
L

R

B

AR LN
AR
VM
':"v“" &) 7' Y ‘l

5

e
VAN
AN @

A

.
R

3.1.2 Reported Problems in Conventional Software Development

'i 'i""l

)

Services should and could pursue the development of software under a single policy and standard
and that efficiencies could be achieved with a common approach within the DOD community.

¢

As a result of the workshop, a working group was formed to develop a joint Service policy and
standard for the development of software. The model chosen was a slight modification to previously
mentioned waterfall models and was highlighted by its concentration on activities, products, reviews
and baselines associated with the software development process. Both the policy and the standard,
now known as DOD-STD-2167 and dated 5 June 1985, were developed in an cffort to improve
the DOD software development process with an eye towards eliminating the types of problems
identified below. In addition to the standard, a set of data item descriptions (DIDs) and changes
to Military Standards 483, 1521, and 490 were developed. 'This standards package represents the
DOD approach to software development for the 1980°s.

3.1.2 Reported Problems in Conventional Software Development

In preparation for the KBS modeling effort, it was necessary to review past problems in conven-
tional software development so that past mistakes would not be repeated. Numerous studies had
been conducted and significant effort expended to define and categorize these problems. With the
knowledge of past development problems in hand, the modeling effort could be conducted in such a
manner that the resulting KBS development model orientation would not repeat the past problems
of the conventional software development world.

Frer
o W wl

b -

P A AR

b

Lok gl

Many problems associated with conventional software surfaced during the development of DOD
Defense Systems and can be categorized best under the following headings:

[

" .

e Software Life Cycle;

- YV W
RN NP

e Software Environment;

e Software Product; and

, LY AT
-Wsr Ko

"-",' ;

e Software People.

¥
f‘l

“~
Ly
3

o
-
- .X‘}\

The following sections examine the major problems in each of the stipulated categories. The
problem categorization identified is based on a report issued by the DOD Joint Services Task
Force, Report of the DOD Task Force on Software Problems. Appendix A presents a list of specific
conventional and Al software development probiems. (17, Druffel

fCCUN

3.1.2.1 Software Life Cycle

Software Life Cycle refers to the development of conventional software from requirements defi-

nition and analysis to system maintenance and quality assurance. Software problems have been
experienced in the following areas:

o Requirements;

e Management,

3-2

. \ 4 \\-‘\\\'-"‘... ,1’- "ffffff'i"f
"': ‘:‘ ..:":) .:“:‘ a Tt '&c N \, AR, :"s"»f\ 1‘:"‘: ':""" \:,r;"'i
it) ~ -.) SIS 3
, ;Q,.l ;".:‘ » .:‘| l.\"'.!' WS hl ‘ .) > ~ oy >

“.‘.I".‘...:‘ '\
l '|l’ 2
) t

-
~
N

i
S

l‘ ‘lI ¥

I

3.1.2 Reported Problems in Conventional Software Developnient

e Acquisition;

e Product Assurance; and

e Transition.

Requirements is the process that involves the analysis and definition of a system. In conventional
software, some of the major difficulties with requirements surface from incomplete or inaccurate
requirements documents and/or poor communication between users and engineers. In general,
each of the stipulated problems can result in increased costs and unacceptable schedule delays. A
system’s success is particularly affected when the requirements are based primarily on available
time and money.

Difficulties with management of conventional software development occur because of a variety of
obstacles that relate to:

insufficient budget allocation;

o unskilled management;

lack of metrics, models and tools;

undefined software acquisition methods; and

o determining how to develop software versus hardware.

The ripple effect of unskilled management is reflected throughout all phases of the software life
cycle. For example, proper design depends highly on complete requirements which in turn rely
heavily on good management communication. Another obstacle to gnod management results from
budget estimates based on vague requirements or budgets determined from inaccurate models and
metrics designed to determine software costs. Finally, without the necessary models. metries and
tools, nanagement does not have the appropriate tools to adhere to software development standards
requiring status reporting.

Acquisition of software and tools is not fully defined for conventional software development because
government software acquisition has historically been based on the purchase of associated hardware
In the area of tools application, configurations of software are often not properly managed even
thongh the tools exist to do so. Tools are often developed in-house and not made available to others
for their use.

Testing is not provided at each life cycle phase because of insufficient funding and schedualing
In fact, uncertainties arise in determining the amount and kind of testing suitable to each hfe
cycle phase. Testing problems occur most frequently where requirements are vague, incomplete or
difficult to measure.

The transition of software, whether from exploratory research to enginecring development. or from
development to maintenance, introduces numerous problems that adversely affect conventional
software. Two transition examples from which problems suifaced are: the introduction of ticro-
processors and firmware into software development and the distribution of management control
(a need for a standard or policy has arisen®; and the transition of software from research and
development. to operational systems (how should it be accomplished?)

Y "
»

»y

> "
[d
5%

".
':4
S

Lo
S

he T T]

’.
P é
;syi

oy
",
N

)

(S J
P

'q&fi.i

AR

L

PN
5
»

i

;
=

- Ay
L% 2, %
nd
L

'd|
2 LI

2

105,

]
"

Ay
7y
7

g

Y
g

>

EEX
R, S

R
()

".’",i
P/

Ly
o) ay »‘-".’:&" A
5

fr

L=

L4

1_‘&'-

)

Y

L]
AN

45

l’ £,
P4
[
’,

",
z

Y
7

?,
b
>

<

@
¥

3 e . e st ~obatlY e 0% 0 5 0°00t",
s B e et Bt a¥ Tat faata’ate’atd a2k 24 2% UWEF LN RN LS & KW o gt k

1y > W= &

3.1.2 Reported Problems in Conventional Software Development

S w
- - -

3.1.2.2 Enviromment

N The Environment category deals with the tools and methodologies used in the develcpment and
support of computer software. Problems exist in the following areas:

s e Disciplined Methods;

Labor-intensive activities;
e Tools;

o Reinvention; and

Capital Investment.

L) Conventional software needs to improve the use of engincering disciplines. A set of activities are
) required to develop and support software throughout the entire life cycle in order to create high
] quality software. Large development efforts are performed by many grouws, either colocated or
independently located. This demands disciplined contro! mechanisms if software development is to
be properly managed.

As a labor-intensive technology, conventional software needs to concentrate on automating the
manual process in order to improve the efficiency of people. For example, the manual process of
reporting documents, status, etc. could be automated to allow professionals to concentrate on more
difficult and important tasks.

¢ The lack of standardized tools has resulted in problems with acquisition and software development.
A large number of tools tend to be inaccessible, difficuit to use or inefficient. Software tool acqui-
N sition could become more definable and therefore more achievable with a standard set of tools that
provide consistent computer support, particularly for software development. For example, high
> order languages should strive for machine independence that would improve transportability.

Soltware reusability is considered by many to be a powerful means of reducing sofiware reinvention.
However, attempts to reuse software inappropriate to the given application may actually hinder
the dev-lopment process and degrade the resultant product.

! Capital investment is needed to improve the support environments and reduce problems such as

reinvention or the lack of adequate methodologies and tools. There are three main problems asso-
k. ciated with the lack of capital for conventional software expenditures. First, software is developed
: on out-of-date hardware not designed to support the software effort. Second, schedule slips due to
the lack of adequate tools introduce higher overall costs. Third, not enough capital is invested in
IR & D projects.

.'J.)

PRA

h)

3.1.2.3 Software Product

N Y
',".-'
ARRRS

The Software Product category is defined as the operational computer software and materials
necessary to provide life cycle support. These include requirement and design specifications, source
code, test data, system generalion data, unique support tools, etc. Problems have been experienced
in the following areas:

f ‘
"..l
v

3-4

)

:'|‘: . A
o
!!-‘!:-':It-‘.

. [" " P & o e Wy Wy W™, "2 2 S a‘.',\t ['M"-*'J'\-"-'\"«"J‘-.‘ -
LN At O Aty NP P, A A A TR S T el

.‘:‘("E" *‘g'"".""?‘"} ﬁ::. X N{\i‘f‘:ﬁﬁ: ".-:.r:f:-t"‘ :'c: o

“'- ‘-l‘.l. » AN l"l‘.‘l'. .c. 'ul- W VAN -.. N ‘n "Q. R ..‘0‘

OO

;‘-.- . U oy 9, WL Wy, e NN Sal A e\ X W ava Ny ..-~
! s
8 RN
l" LY
E a 3
®
o sy . . ‘o
o 3.1.2 Reported Problems in Conventional Software Dovelopment .‘_'f:
’ RN
Do
Pt o Doesn’t Meet the Need; ~e
: »
" o Software Metrics; s
4
W Pl
.I
::' e Desigu Attributes; P.:'
I ’
1 . NG
" ¢ Documentation; and Ay
" o Immutable Software. A 2y
o T
- '..f-
& ‘Doesn’t meet the need’ refers to the users dissatisfaction with the system. An inferior product can :::-.f_:.
[easily be developed as a result of unclear, vague or incorrect requirements. System performance is o
Nt - . g
highly dependent on the type and quality of testing. In both situations, users end up with a system &
W which simply does not work to perform the mission. v
LY
v) gt
i Software metrics provide essential analytic models and empirical data on software to help in the v
X selection of software engineering techniques for estimating development resources and to evaluating :b';'\
! future costs. However, few effective models were found in use to validate conventional life cycle wia)
_ costs and productivity during the development and support phase. Few good analytic models and KX
- methods are available to gather empirical data to estimate future costs and system impacts. No :_\.'7,
1": method to determine how to develop firmware has been established. Lastly, managers do not receive e
On the status reports necessary for cost and schedule analysis. f.~:.
i -
by’ Design attributes deal with the provision of an acceptable program solution to problems detined in Mo
the requirements specifications. Some of the major areas where design problems have beeu identified L0
\ are: not adhering to good software development techniques; inadequately designed requirements: oty
) g tog P ques; inadequately desig | i
! and understanding software versus hardware implications. hnproperly designed software is often ,‘_'-f. f
Vi the result of not following a defined software methodology, a lack of adherence to a top-down :-::
L) hierarchical system breakdown and/or a lack of consideration to human cngineering as an important :::
design issue. Another major design problem occurs when requirements are vague or incorrect and ¥
KR the engineer makes the wrong assumptions to implement the requirement. Also, correct software 5‘:
-, design decisions depend on a basic understanding of the hardware involved. Since conventional %
4 software normally cannot handle system modifications without added cost, expenditures or schedule
»
8 delays, ineffective system design severely hinders the system’s success.
unt
- A major problem affecting conventional software documentation is that linancial resources allocated
& Lo ita preparation do not necessarily reflect actual costs. Therefore, whenever a schedule slips. or
-:; the budget is overspent, the documentation effort is relaxed. Consequently. successive software
/) changes are not reflected 1n the documentation. Another problem stemming from a rediction
: in documentation is the determination of what needs to be documented. For instance, system
mterfaces must be documented and the documentation of requirements and design 15 important.
N Also, traceability between docutnents is critical but generally not possible hecause of unavailable
o tools.
" . -
}_. One of the problems with the development of conventional computer software is that it i generally
~ tailored to the specific application or hardware environinent. Consequently, software packages are
often system unique, non-portable and non-reusable (Immutable Software). Acquisition agencies
) are then forced to repeatedly pay for software which could have been available elsewhere.
4
K
’l
1)
.y 35

&

f hd ~' a?’ \' r L] L] \'\'4"
'\;:}\'ﬁ .*\‘F\‘.\' Pl
SIS AS N AN

N &' " YRy " -".

R AP 4N

) y » d A . . BatelSul, i, Nl i Sl P b 2t s, ai R e, LA A St e B I S L

<
¥ '~$
:’l' -\'
L) --.-
. PG
::r 3.2 AI Software Approach :
! e
-, :‘\-ﬁ i
e 3.1.2.4 People ply
" Qualified software personnel for managerial and technical positions are required 1o avoud project . !
] L] ()
':EE problems. People problems exist in the following subcategories: “
k .
.]
::I. o Skills; \
‘.“ -
e Availability; and ’
P by
4 . .-:
e o Incentive. I
[~ I
v ' ot
" The rapid spread of digital technology has resulted in a widespread shortage of skilled system en- :_2"
ul gineers, software engineers and managers. Consequently, the three main problems of professional “f‘
- skills, professional availability and professional incentive have been identified. A highly valued and Ry
L respected managerial skill is the ability to guide software through the life cycle from requirements '\%
» to maintenance. However, the skills necessary to do this requires a broad range of software experi- ;:,,.':
’ ence and acquired knowledge. Few educational programs exist to provide prof:ssionals with these 'S‘"‘ \
’ necessary skills. Therefore, the lack of available, experienced and skilled software professionals y
a continues to exist. Professional incentives are needed to attract and retain expert software profes- 'V."
= sionals. A lack of reward for excellence and the competitive sofiware market in search of skilled :-:"
W software professionals results in high turnover rates. ol
. \:'\
o} -~
* VY,
) 3.2 Al Software Approach oy
\J
: ":f ;'::\. 1
~ Al techniques have typically been oriented towards ill-structured problems with solutions that are ‘\\'S:"
:-' characterized as heuristic, non-algorithmic and non-deterministic. Al technology application areas Q{n_)
o that reflect. these characteristics include robotics, vision, natural language, automatic programming, ESAY,
w planning and expert systems. The Al solution approach to these areas is in contrast to conventional w
" software methods that generally deal with well-defined algorithmic problems and deterministic *h
& solutions. .r
- "-' \
j The characteristics associated with Al applications have had a strong influence on the approaches gty
taken to Al software development. Uncertainty of tasks, knowledge, results and functionality have Ry \
' prompted Al programs to be written to gain a better understanding of the problem domain. Because L 3
-, of this uncertainty, rapid changes in the solution approach are expected as more is learned about the :
» problem domain. This has led to the development of powerful tools and integrated environments for
- the development of Al software. The result is that Al development approaches are iterative in nature
o and accomplished by small development teams using highly integrated development environments. BN
The Al technology environment that has supported the non-algorithmic, heuristic approach to .9
PP 8 PP
N problem solving includes programming languages, development methodologies, and developinent ::f_:'_ '
2 environments. Fhese technology areas have been prime contributors in supporting small develop- :.{:
o ment teams in their quest to handle large problem domains. ‘{}:
L]
v Al programming languages inherently support development under uncertainty. The longest sur- v A\
viving Al language is LISP. It supports delayed committment and language extensions as two ®
7 approaches to managing uncertainty. SAN
N
:: -“:I
L
N 36 e
L J

F .
L T8 WO
o AN
YA SO A

(¥, 7 '
TS RN
AR

‘v

i)

5 gt

§.2°%

3.3 Generic Description of the Al Development Process

Development methodologies are closely tied to the iterative problem solving approach to Al soft-
ware. Both the iteration cycle and the need to delay decisions or specifications until development of
a mature prototype is complete are inconsistent with conventional software developrent method-
ologies. Al software development methodologies typically begin in the middle of & problem donan
and spiral out to a complete, acceptable solution rather than adopting a top-down hierarchical
decomposition approach typical of conventivnal software methodologies.

Al software developinent environments reflect a committment to personal computing. These en-
vironments absorb some of the tedious and routine work such as: garbage collection; memory
allocation; integrated editing, debugging and inspection; and documentation. They also allow han-
dling of knowledge based facilities. Background processes in Al development environments provide
tracking information about programs, display presentation of the inforimation, and provide active
agents to recognize conditions, propose action and perform cleanup. LISP machines and Al shells
are examples of such development environments.

3.3 Generic Description of the AI Development Process

Al system development has been described as a highly iterative process and generally resembles
a build a little, test a little approach with numerous feedback loops. Close examination of the Al
development process reveals a set of activities that are integral to the development of an Al system.
These activities, which are a synopsis of the models to follow, include:

Problem Definition;

System Design,

Implementation and Testing; and

Support.

Coupling these activities with the concept of building system increments allows for the dehvery
of partial capabilities for use early in the development process. Experience through use can then
be fed back into the development process so updates can be made to future increments prior to
delivery for field nse.

Several of the better documented methodologies are described i the followinyg paracraphs these
methodologies recognize the iterative, incremental approach to Al system deselopment. The weneric
deseriptions dilfer somewhat in definition and phasing. however. they are all peneratly supportive
of the previously identified activities that are applied inan incremental nanner

2.3.1f The Expert Systemn Model

In Butlding Erpert Systems (35, Hayex Roth! the authors dehne the major stages of knowledge

acquisition for expert system construction as:

o Identification;

¢

£

-
&4

F
&

- d
(N
'.:.

L
v
A
.

¢ 2

. B
5, "
.,l L3
7

.
LA

h)

L.

A %
¢

¢

»
1
Py’
‘»

Bt

5',_»"\'
[N

LR
'.':-,"-.‘_-._
ey Y

£

-ﬂ X
oy l'..lﬁ'"-'. ’

reSt e

¥

PN ¥,

BRRORAD

VNN
L)

v
"

T2
'.
.

L T
5‘_'_'
e
_.‘ .l

T 2u N
PR RS
% e

.' .l
(Y

IR
SN,

4

b

A
PSR

(x4
o7
f‘fn

‘g Qv ‘e i By 39, WLV LW ° e Y0t e %y & L RU R, B TR S ‘ot "4 2% R 2% (N aWul Sl gt %y '

R

]

]

L]

, 3.3.2 The DEC Model

: e Conceptuahzation:

. e Formalization; \

[}]

' e lmplementation: and

1

: e Testing.

'D

h Although defined in terms of knowledge acquisition, the stages aiso revrssent how an expert system -

4 is constructed. Fach slage defines a set of activities related Lo expert systen: development. As -

' the anthors point out, these stages are not sequential in nature but instead overlap each other. ‘
Further, development of an expert system does not constitute a singlc pass throagh the stages »
There is continnous feedback from each of the stages to all preceeding stagex thus revresenting the
incremental nature of the KBS knowledge acquisition proc.ss. o~

»

'?";;f Pek

<,

Further exanunation of the stages of knowledge acquisition reveals a 1i-apning between stages and
the previounsly defined phases of Problem Definition, Systern Design, Impleneatation and Testing,
and Support. Identification equals Problem Definition and involves defining the preblem domain,
developing informal descripticns of the problem and partitioning it inte suhproblems Conceptu-
alization and Formalization parallel the System Design phase activities of knowledge acquisition
h for a selected aunbset of the problem domain and developing a partial specification detailing the
tools and representations thought to be appropriate for the problem domain. Implementation and
Testing includes the actnal construction of the KBS system or its subset i the chosen language
environment followed by a test of its correctuness.

g',

1

"
ANy
PAASL

e
o
5‘:

8
S 3

L
<.
e

) The five stages are further mapped into two phases rather thar the four activities identified above.
The two phases are:

SR
7

£

e Phase | - ldentitication and Conceptualization

e Phase 2 - Formalization, Implementation and Testing
The differences in phasing do not represent a conflict but instead offer two different views.

! 3.3.2 The DEC Model

In The Artifical Intelligence Erperience: An Introduction |59, Scown] | the author defines a model
for expert syvstem development which essentially includes four phases. These phases are:

e Problem bentilication:
il
o Functional and Design Specification;
o Create Bonnded Prototype, and °
N
e Incremental Development "‘-:‘::
)
;::-::f'
3 8 ‘g
'T'
o

l...'\
e 0 d

o sl
>

Sy
a

'

o)

3.3.3 The Dipmoter Advisor

Problem Identification includes the definition of the problemy domain. Functional and Design Speci-
fication equates to the previously generic phase of Systei: Design whercun a subset of the knowledge
domain is defined and a functional specification for a bounded prototype is developed In addition,
a design specification is developed detailing the tools and representations thought to be appropriate
to the problem domain. Creation of the bounded prototype represents hmplementation and Testing
for the first deliverable product. Incremental Development represents all subsequent development
and testing activites associated with deliveries on an incremental basis in the evolutionary, iterative
environment of Al system development.

The DEC model closely tracks the generic model previously defined. The development model views
the process as a set of sequential activities to the point of achieving a bounded prototype. At this
point it becomes the iterative process of develop an increment, test 1t and then release it to the
field for further feedback and support.

3.3.3 The Dipmeter Advisor

The Dipmeter Advisor expert system experiences reflect two different aspects of phasing consider-
ations {62, Smith]. Oue reflects an oscillation that occurred during the project and the other the
phased approach taken to develop successive prototypes for the Dipmeter Advisor

The oscillation is best explained by examining the two phased development process that occurred
in respect to tool development and prototype implementation. The first phase constituted a fea-
sibility demonstration in which knowledge was collected for a constrained problem and the tools
selected appropriate to the domain. The second phase included an expanded unplementation of
the domain knowledge where the expert system development tools remained relatively constant
As development progressed, points in time were reachcd where the mitially dehined tools did not
allow further expansion of system expertise. The development process was interrupted at this point
while the phase one activity was restarted to construct a more powerful set of tools

The Dipieter Advisor project went through a three phase development process of.

e Feasibility Detnonstration
o Utihity Performance Detnonstration

o Uitdity /Perlormance bvaluation

The Fea ibility phase included the activities of knowledge acquisition and prototy pe implenmenta-
tion, and as such really conld be conceived of as two separate phases The Utihity Performance
Demonstration phase examined the product for its ability to provide the correst answers but also
examined the viability of the prototype as a commercial product The Unlitv: Performance Foval-

nation phase consisted of field evalnation of the prototype Al af these phases wehieled protdem

and enhancement feedback for preparation of the next prototype

i
’ a

o

LA

y S
b3

-

A of BTN
S @
s"'.'.'.-dﬁ £

l":’

PR A
l"l'

LB)
'y 1

o

P
-l L

Ly

RSP
oy

= % nd
. o :"r

XA P L AR
SN O

* 1y
e

Sl
2 A

]
N 7,

'{‘ " A] .'
y ,‘..{-‘.:‘-f J"-'.

.’"II
P,

y
1@

¥
b

,,,{,..
L
ey
x n_ 5

.. . .y N Yy "J
o'e ot
SV s ®

3.3.4 Otler Generic Models

3.3.4 Other Generic Models

There are numerons other models which have been developed which in some way paraliel one of the

previous mentioned models (20.22) Harmon, Gates!. These models refiect phosang which is both

overlapping and iterative in nature, and an approach that relies on extensive protovyping.

Generic Definition of KBS Developments

Defining a j enerie deseription of the KBS development process is a task vhat reguires the identifi-
cation of the steps or phases in the process and associating activities with cacis phasc. The iterative
nature of KK developments further complicates any visualization of the proes

s and requires that
one think about it as a repeating process

The generic phases cf Problew tuentification, System
Design, Iinj lementation and Testing, and Support, as summarized in Table 3.2.5 1, represent a
phased patt rn (hat has been largely substantiated by the available literat..re and ane that was
nsed as a stirtig point for the modeling effort,

XX

3
i

a e &

Table 3.3.5 1: Generic Moude! Phases

DEC
Model

Ak

Moded Expert
ve System

Model

Dipmeter Harmon

i

5 8, ¢

A(l\'i%(\r

Maodel

4

and King
Moaodel

Problem

Selection

X

Phases

Probler

Y M
o

Definition Identification

Identification
Functional and
Design Specification

Problem T
!
t

System Design | Conceptualization

Knrwledge
Formalhization

Prototype
Acqaisiting Development and

System Design

PRt A N

Goat e

lmplementation
and Testing

—

Implementation

Testing

Bounded
Prototype and
Incremental
Development

Prototype
Implementation and
Demonstration of
Utility and
Performance

Delivery of
Computer Systemn
and Systetn
Evaluation

Support

L

Delivery

Fvaluation
of Utility and
Performance

J——

Integration
and Maintenance

The activities associated with each phase have been widely documented in the hiterature and ac-

cepted by orgamzaticus waith sigmilicant expert systems development activities. The chosen generic

dezeription provieles she foundation for the discussions and data represented in the remainder of

the rej o

A
Y 2 Y

AT e
el oy
t.&“:-.

“s

“wh S
waa
.-‘l

ey
A

O
res 2

F R A
[l S AR
PR

&

S
.'(Ia‘-‘-

FEAL A EL
>
o,

3.4 Description of KI3S Development Characteristics

3.4 Description of KBS Development Characteristics

Nost of these char-
acteristics either have no counterpart or are exercised differently when compared to conventional
software development activities.
lowing KBS features:

There are many characteristics associated with a KBS development project

In this subsection, detailed descriptions are provided for the fol-

L. Knowledge acquisition;

2. Knowledge representation;

3. Reasoning methods;

4. Redundancy exploitation;

5. Developnient environment;

6. EKxploratory programming style;
7. Rapid prototyping:

8. Small development tearns;

9. User involvement;

10. Documentation produced;

11. Testing; and

12. Management control mechanisms.

The manner in which the above features relate to conventional software development characteristioe
should be evident from the discussion that follows.

3.4.1 Knowledge Acquisition

A major aspect of the development of expert systems resides in knowtedge acquisition The process
involves the transfer and transformation of problem-solving expertise from a knowledge source
such as human experts, data bases, and literature, to a program There 15 no such activity o
the algoritlunic world of conventional software development becanse knowledge 1w« not exphicitly
represented as a separate system component. Unfortunately, knowledge acquistion represents the
main bottleneck i expert system developinent because of the diffienlty with extrcnmg knowledge
(or incorperabion into a knowledge base As a result, systen development time - prolonged
Another problem s based on the fact that only a limited tnmber of antonited vonls st to aid
Lopsition de pends

i the acquisition of knowledge from the domain expert. Therelore. ke wleta

on the skill of the knowledge engineer who must effectively commminueat o with the domin oxpen

i order to understand and structure the knowledge. Knowledge acqgoeanion voeht s olve ~everal

311
L A A O T LY Y Gt RN T AT Rt TS AP AT AN R AP P At . LI BT AF RO AS LT L PL LIS L A LR IPS ¥ I D e T Y
N N e N A IR
o (A4S RN L RE A P Lt LP ALY LA AP ALVAS LA R S Tl gl LA SESLRA RN L% a
NI AN AL A 0 A O it R A (RSN A 8, Ty iyt

Vel
R A

S
AT n.,\'l,'

LA
2SNy

1ls_ o ¢ &
4
[

S

i

-

Okl e
h P 2’
TR SnA N
"..’.v AI'.';.'l": [y :'

Y a.-r:'f?{f

h)
]

Y \(o«

Y

s
NS

B2

:
L4
h]

h

]

JS
&
[

i

ORIAARAEY
Py « ;t.:i.ﬁ
M LA LCLE DN

A
‘:.'\r)'-
AR

AR AL A Y

3.4.2 Knowledge Representation o

i 1 HERED H 8 tagr 36
planned interviews between the knowledge engineer(s) and the domria exper! (s with e prrpose
of extracting. sununarizing and structuring the knowledge

Knowledge acquisition begins with an identification of the expert systeqi's past-crpants, goals and
problems. Geunerally. one knowledge engineer is assigned to research vie systen < iovddedge dotman
and hold interviews. Likewise, one domain expert usualiy represents tie expert system needs
However, depending on the scale and complexity of the sointion space. more than one engineer
or expert may be assizned 10 a project. The knowledge engiteer's responsiiniiies o rescarch the
domain and schedule meetings with the expert is designed to aid in the procoes cfidentilymg the
system's problems and goals

An inherent difficulty with knowledge acquisition lies in helping the expert to structure his/hier
knowledge. to identify and to formalize domain concepts. Domain experts canpot ziways logically
express the manner in which they solve problems. Therefore. a number of interviewing techniques
are available to the engineer o help measure performance and uncover expertise Audo tapes of
the interviews are not uncommon.

As key problem-solving methods are identified, a means to produce and tefine "he expert’s knowl-
edge generally follows. Two well-known methods are to cither transcribe ine problem-solving
knowledge onto paper or to produce a prototype. The motivation behind .oth methods revolves
around a way to present the expert with a visual aid which allows him /her to mientally step through
the process to verify the validity of the problem-solving technigue. Esseutially, gathering an ex-
pert's knowledge involves an incremental approach to define and redefire problems until the domain
knowledge contains an adequate aniount of information to respond appropriately to a problein.

.t

AR
}‘tl;t -"'l.
> [4

&
'll'.

TS W YV,
[

‘P 'I"
L,

The main idea which drives the knowledge acquisition process from identification to conceptualiza-
tion of knowledge, revolves around the need to formalize the concepts, probiems and information
flow into a more formal knowledge representation which defines the data structures, inference rules
and control strategies A recognized dilemma with kncwledge acquisiiion resides in identifying
an expert whose knowledge adequately reflects the problem demain Apparently, an incremental
approach to software acquisition, in the form of several prototype releases, resolves the conflict
of whether data gathered is appropriate to the systein's necds The approach allows the domain
expert an opportunity to watch the system work which enables him,her Lo comment on erroneous
system problem-solving. In turn, the knowledge engineer is provided with a tool with which to
identify probletus areas such as: what kind of knowledge is not sufficiently defined; what kind of L.
logic needs to be redefined; and what new areas of knowledge should be acquired. ®

el
",{":':4' o
oy

;.'—s
‘5"", d

-
I
R e

« a4

LY

Y

M
A

Although the avatlabilivy of tools to aid in the knowledge acquisition process is very limited, some)
tools do exist. (See Section 3.4.5 for a list and explanation »f these tools}). For example, there are _-\":-"'
tools that help construct and refine expert systems. Although the tools do not acquire rules, they
sometimes allow the expert to deline and organize the rule building blocks.

g 8

2.4.2 Knowledge Representation

Koowledee acqgmsition and knowledge representation are closely itertwined, nonsequential pro-
cesses Throughont thee developiment period of a knowledge based systemi, these steps are revisited
many Himes to ttally deline and then refine the knowledge base. In designing a knowledge based
systemn, 1L s not an easy task to determine how the knowledge can best be represented to guide

W W a o T VT T T Y Y A N TR Vg

N ARSI M) '.-\}. P S

AN A A VLR s A

RN O LR AR Ch R GG LS
AR Y

MO LA A AN AR CHER L LA LY Ch G

3.4.2 Knowledge Representation

the systemn’s problein solving behavior. Nonetheless, in order (o extract knowledge from an expert,
it may be helpful to understand apriori how the knowledge will be represented. However, with-
out already having the knowledge, it’s not even clear what has to be represented Consequently,
in Lypical systems, a relatively small but central fraction of the domain expertise is collected by
the knowledge engineer interacting with the expert over a short period of time (e one to two
months). During this period, the knowledze engineer has a chance to evaluate the knowledge,
observing patterns and levels of abstractions before implementation decisions are made.

How knowledge is structured tn a program is highly dependent on the conceptual framework:
whether or not knowledge is centered around objects or processes; or thought of symbolically.
Since a well-defined knowledge representation methodology can simplify complex problems. under-
standing knowledge in order to choose from a large variety of available techniques becomes vital.
The following subsections examine four commonly referenced techniques to represent knowledge:
semantic networks, frame-based, rule-based and logic programming methods.

3.4.2.1 Semantic Net

Semantic net, a knowledge representation method based on a network structure, consists of points
called nodes that are connected by links referred to as arcs. The links define the relationship between
the different nodes. Fach node in the semantic net generally represents physical or conceptual
concepts, events or objects. A variely of choices exist for the definition of arcs, depenchng on
the knowledge represented. Some of the more familiar arcs used to represent the hicrarchical
relationship between nodes are 1s-a and has-part. Natural languages tend to use arcs such as aqge nt,
nbject and recipient. As a simple example from the statements: ‘human is a mammal” and ‘man is a
human’, one can infer that man is a kind of mammal if the semantic net represents the knowledge
as a hierarchical breakdown where man is a subset of human and human is a subsct of manunal

Some common mechanisms or features of semantic nets are inheritance and demons. Inheritance 1s
the ability ¢f one node to adopt properties from nodes at a higher level on a hierarchy A property
inheritance, which can be tmplied from an is.a relationship, means that instances of a class can
have all characteristics of classes to which they belong. Thus, man is an instance of hunan and
inherits properties of human which is a kind of mammal. Naturally. redundant wformation. ana
therefore wasted storage is avoided. Demons are another aspect of semantic nets The main focus
of demons is to provide a resource of information which can be used as values whenever necded or
specifically requested of the database.

3.4.2.2 Frames

Frames are another method of representing knowledge (facts and relationships) Sinular te semante
nets, fraime-based knowledge representations make use of a network of nodes connected by refations
into a hicrarchy. Frames differ from semantic nets in that nodes are defined by groups of att-ibutes
(also referred to as slots). In turn, cach slot may contam attribute values. default values, poanters
to other frames, sets of rules, procedural attachments {that exeente whenever atinbute valies are

referenced), ete. Basically, top-level nodes in the hierarchy represent pencrai concepts and fower

nodes refer to specific instances of concepts and therefore wheett properties of bigher-level nodes

-ﬁ-

e
yas

P ,:".’ I
"'.'I

YA S
iy

0
LY

o n
‘.fl'i'Kl"f "

e

Fr SO

.- 8 . @

SELY et

3.4.2 Knowledge Representation

The procedural attachiment allows for two complementary ways to siate and siore e a0 prees
cedural or declarative representations. Declarative representations are oxjuicit L oiose they are
simply an assertion about a fact. In contrast, procedural represcriations are more difficult to
define because facts are specified by how they are used.

The power of frames consists in an ability to efficiently combine dectarative with procedural rep-
resentations. Because of their modularity, declarative representations arc inore casily maintained
and adaptable to independent and changing facts. Procedural attachinents are mire efficient. but
more difficult to maintain

3.4.2.3 Rules

Rules are another form of knowledge representation, bascd on 1F conduron VIHEN Lifron state-
ments. Bastcally, when the facts stipulated in the IF part of the rule are true the THEN action part
of the rule is executed. When this happens, the rule ts considered fired or evecnt 4. Results may
be manifested in an instruction for the system to add a new hvpothesis to tiir database, progran
control, or peripheral device control.

The pairing of the I¥ partions of rules to facts result in mference chains Thenfersnce cham shows
how the system uses rules to reach its conclusions.

There are basically two inference mechamsims (ways in which rules can be set up in a rule-based
system): forward chaining and backward chaining. Forward chaining refers to the gathering of
preces of wfarmation in an attempt to build forward to an end goal. Backward chaining begins
with a goal and works backward to seek a chain of premises that accounts for all the facts at hand.

Rules. as a knowledge representation scheme, provide a natural environmert for depicting processes
driven by rapidly changing, complex environments. Rules pot only provide =pecifications on how a
prograt should react in relation to changing data withaut necessanily knowing the flow of control,
but can also easily explain what a program did or how a conclusion was reached.

3.4.2.4 Logic Programnmning

Logic. a fonrth type of knowledge representation, encompasses a variety of logical notations and is
Based on the model of proof in mathematical logic. Twe common notations are propositional logic
and predicate calenlus.

Propositional logic deals with statements that are either true or false. Each statement can be
linked together by a conncctive such as and, or, not, tmplhes and cquivalent which resuit in a

compound statement. Rules exist to propogate the truthfulress of compounds Other rules support
inferencing

Predicate calenlus s considered an extension to propositional logic. Eleimentary units are referred
to a< objects and statements about objects are considered predicates. Therefore, the statement
is son{Bruce, Tomj is a two-place predicate with two objects, Bruce and Tom. The predicate can

be evaluated as a true or {alse assertion that Tom is or 13 not the son of Bruce. Predicates can be

linked into larger expressions by means of the same connectives used in propositional logic.
§ \

NN S
N A
2%y

Sy

t

)< v 7

.

4y v

Ky,

v

SN N

AR AR B T T e P

3.4.3 Reasoning Methods

PROLOG, which stands for PROgramming fanguage for LOG s i classie example of a langiage
which incorporates some of the principles of predicate logic The PROLOG control structire as
k logical inference. Basically, one states facte and rules about obyects and PROLOG can deternne
\ whether a specific conclusion can be deduced given the collected data
h
K
h
3.4.3 Reasoning Methods
& .
: There are numerous reasoning methods reported in the literature. Consequentiy. the discuss<ion in
3 this section is generally limited to the more common strategies and those methods reported onin
. the case studies presented in Section 4.

Three areas of reasoning that might guide a KBS system through its knowledge base imclude

e inference strategies;
e inexact reasoning; and

e control.

Inference strategies are generally based on the use of logical axioms The most common inference
strategy used in knowledge systems today is the appheation of a logical rale catled modus ponens
[29, Harmon| The method states that if the premise(s) of a rule is true. then the conclusion(s) s
true. Namely, when A is known to be true and an axiom “If A, then B” exists. it s valid to conclude
that B is true. The application of modus ponens has two imphecations. First. the method s sunple
so that reasoning based upon it is easily understood. Secondly, not all vahd conclusions can be
drawn with the use of modus ponens alone. Modus tollens can be used to enrich the wferencing
strategy. This logical axiomn states that if B s known to be false and an axaom 11 A they B
exists, then it is valid to conclude that A is false.

Resolution is another, more general mference rule. The basis of resolution i~ that al there are two

axioms of the form:

e AorB

e not Bor C

then A or C logically follows. The expression A or O is called the rescivent of vhe first iwo
expressions. Resolution can be generalized so that there can be any nunmber of digyunct<n either

of the two initial expressions as long as one expression has a disjunct that = the necation of o
disjunct in the other expression In the general case, conclusions drawn by lomieal axioms <ach ax

modus ponens and modus tollens can also be arrived at using resclution

Because a knowledge base may not neeessarily contain all the formation requred 1o roach a
conclusion, inferencing techniques must include reasoning about uncertmnty dn other wors s hike
an expert, the inference engine tnust be able to deal with incomplete information Joncsact reioning
has been implemented using either numerical or non-numerncal techugnes

o g NNy

LA AP
A
TNty .-"f‘:‘:. 4,

2

o 51
L0
1'.2,:1

’.

.’f
L 4
2>

o o o
hJ
5%
L B ¢

4 7
o i

[

%
‘l‘:

B Y v

e
>

Pl

L]

‘i’.
[
PN 4

> 7

2,

)
Y

)
P

b

h]

¥

“I
P A4

-
‘f
o
o

‘

« 'li
[
i

[3
LN)

2y

I
'

7/
s

3.4.3 Reasoning Methods

Numerical methods may include the use of confidence levels or certainty fuctors a-tached to a
particular conclusion and propogated as further inferences are made. For mstance, 1f « man 1s

::‘ wearing a white collar, he must be a priest may be associated with a 30% couhdence levei.
:: Another pumerical approach to dealing with uncertainty is the use of Rayesian decision theory.
;:' Simply stated, this method associates a subjective probability value with every hypothesis to mea-
*!: sure the degree of belief. In the absence of evidence, any hypothesis is assume! to have an initial
probability which changes as evidence is gathered. The ultimate goal is to choose the hypothesis
o with the highest probability.
:'::. The fundamental concern with numerical methods of handling uncertainty = that they hide the
:: reasoning that produces them. [14, Cohen]. In addition, while numbers are casy to propogate
o over inferences, what the numbers mean may not be clear. The theory of endnrsements is a non-
. numerical method of inexact reasoning. Because inexact reasoning is a knowledge intensive task,
::: the theory of endorsements employs a heuristic approach to dealing w ith unceriainty. Endorsements
1 are records of information that affect one’s certainty, including the kind of eviclonce available and
’: the methods used to produce the current hypothesis from uncertain preconditions. Endorsements
N are propogated over inferences using heuristics in a manner that is sensitive to the context of the

inference. Furthermore, endorsements can be ranked in an effort to choose the hypothesis with a

o superior level of endorsement.

ity Endorsement is similiar to recording justifications in a truth maintenence system ("TMS}) |14, Cohen|.
! The crucial difference is that in a TMS, a justification is used to decide whether a conclusion has
" support, but the kind of support (or evidence) is irrelevant.

Both endorsements and TMS support nonmonotonic reasoning wherein con-lusions that arve true

. at one instance may need to be retracted. Nonmonotonic systems generally include a dependency
; network approach to logic which maintains dependencies between values. ‘iruth values are pro-
: pogated using constraints supplied by logical expressions. With dependency networks, one can

keep track of justifications made for all conclusions which can then ke modified if previous assump-
tions are withdrawn. For example, in a planning system, it may make sense Lo proceed in a certain

) way. As more information becomes available, an earlier decision may need to be retracted. As a
“. consequence, all the inplications based on that initial decision also need t¢ be retracted.
L In a monotonic reasoning system, all values roncluded remain true throughout the course of the
o program run. In other words, facts that become true remain true. " n
. L
< In addition to inference strategies and inexact reasoning, there are two primary problems associated NG
-
- with a knowledge based syster that are addressed by the control portion of the inference cngine: ._',,\'_’,.
- :.r-'_\.-
b~)
A) . DA
& o where o begin the reasoning process; and A
) Nt
B - B
e what to do when alternative lines of reasoning emerge. °
& A
: - 3
v, The first problem can be answered by the use of forward and/or backward chaming mentioned in \'\
. , : .) =
. Section 3023 If the possible outcomes are known and if they are reasonably small in aumber, R
then a backward chaining or goal directed approach is very efficient. On the other hand, if the WO
number of possible outcones 1s large or if the possible goal states are not known at the outset, a o
3 . . .
:: forward chaiming or data driven approach is needed. :-;s,-‘
) AL
L oy
\-» y
M
Wi

’ -
LY ARG S U Rl S S Y Sl Ol S o St s ol S ey

o M N A N N A AT AN A

l":: I AT N BTN

o, ' ./\,F
d o™y e
".':’!':“!‘l‘ak'.g“.n'l't"'g ’ " ""—*J. .I. .‘{‘

4
e S

3.4.4 Redundancy Exploitation

Planning islands represent another approach to the first probleni. Namely, begin processing where
there is the most information and the least amount of uncertainty.

The second problem can be addressed by deciding on either a Jepth-fivst or breadih-frrst search
With the more common method, depin-first, the inference engine focuses on searching for detadd
and descending to deeper levels to produce a subgoal. A breadth-first search sweeps across all
possible premises in a rule before digging fur greater detail.

In addition to depth-first and breadth-first, there are many more search strategies that have been
employed in KBS system developments. Nonetheless, a discussion of additional strategies is beyond
the intent of the discussion herein.

With any of the control strategies discussed above, the inference engine can provide the basis for
an explanation facility by keeping track of where it went to fortn any particular couclusion

3.4.4 Redundancy Exploitation

One of the features of KBS development that has impact on performance, reliability and jualit;
is the redundancy of information and processing. This characteristic is tn part due to the nature
of the more common knowledge representation schemes and inference mechanisins and in part to
the “middle-out” problem solution approach. Typically, each item is evaluzted or tested <everal
times before all conditions and changes are satisfied. KBS systems are generally binlt recursively
so a module may be used or executed for a variety of purposes. Use ol both forward and backward
chaining in the same system provides redundant methods of inference. Support of ialtiple lines of
reasoning is common in the more complex expert systems. All of these factors work to provide a
higher reliability measure for the code providing the right answer since it his been tested with
variety of inputs in a variety of contexts. Similarly, the data or knowledge has been massa ted by
several different processes so unexpected results become less common

Redundant knowledge and inference processing work together to reduce the effects of unce tainty
and missing data. During the development process, they help to highlight inconsisteney Witly
proper development team discipline during the period of iterative changes to the KBX sy< emo 1t
becomes robust in handling uncertainty and inconsistency.
aspect of redundancy exploitation more important in the case of autonomous systems thas ones
with more human interaction and control. Strategies for its emploviment in BA ¢

[ssties of trustworthimess ma e tins

appli athions
hinge on the continnation of research to define conditions for this redundancy and incorporanon of
this knowledge in a set of knowledge based tools used by the developrent teams

3.4.5 Development Envirommnent

Development environments for KBS software have been among the most powerful avaltable herause
of their emphasis on a user interface, debug facilities and tight coupling to the langa e of <haee
Ifforts in the last twenty years to ereate a programming environment and tools for the production
of large and complex programs have been successful in providing high resohition graphies. mult-

windowing and an integrated environment to enhance user productivity by <hortemne the ovele of
edit, compile, link, debug, and execute. Increased productivity due 1o this cvdle shortening has

L}

.

[

L4 g'..n'

l.!l‘
1]
P

1
t-.;'.‘_» 5
Y
s

A

e

e e 4
Ay
Pt

.Jv‘- ’
v
LA

.
¥
o,
’ L

€ e

e

et
-.'-."w.:’\.\'.
T
-'l'

¥

‘-'

R
bt

3
)

AT Th g
P A AT
‘n'i;al'14

25
r XAy

[d
P4
':“.

5
o

fx:_-.'
oy

et
Ry

A
7
P

}',ﬁ"
-ﬁfﬂﬂ{
\ 54

A g Ba - B

3.4.6 Exploratory Programming Style

been accomplished through a reduction of operational steps in the cycle, and the capabinity to do
incren ental compiles and function evaluation.

Tools Jeveloped inclhide the programming languages themselves such as LISP. PROLOG and OPSH
LISP has the capability to create and embed languages which have been used for tasks such as de-
pendency analysis, browsing, inference, truth maintenance, constraint propagation and knowledge
representation. A class of computers called LISP machines provides the power of an integrated
software development environment by integrating these tools with editors, miemuing systems, and
the capabilities of the LISP language. There are some hardware enhancements that support ths
environment including high resolution graphics display, data type tagging, and directed machine
architectures Future capabilities will include parallel processing and memory features which will
allow more powerful search and control strategies to be executed withit the machine resourees

Special tools exist to aid in the generation of experl systems. These tools, called Expert System
Shells, are available to assist in the development of many standard architectures for expert systems.
These <hells provide additional integrated environment services. Iferen.e ergines, knowtedge rep-
resentition schemes and graphics oriented interfaces provided by the shells are readily available {or
install «tion on a wide variety of host machines.

The commercial proliferation of expert systemn shells and the wide availabulity of differing tools
and languages provides many choices in the selection of an environmeut. Importaut considerations
other 1han cost include the amount of overhead that is allowed, suitability of the representation
of knowledge. and inference techniques that are required. ‘There have beer: many observations
of an iterative cycle of tool building and knowledge acquisition, which may be shortened by the
appropriate scelection of tools if enough is known about the problem area initially.

There are efforts underway to provide further power in the integrated environiment for the use of
development teams. Other efforts of value to the KBS developers and project. personnel include the
development. of a knowledge based editor of which KBEmacs is one of the most widely docinnented
examples. Tools to aid in the development of KBS software, but to be uved by personnel other
than the Al development engineers, would include a test management assistant and a project
management assistant designed to import knowledge from the development area and aid the test

team or the management team in reaching decisions affecting the development and test of the
syatem

Increased capalnlity in the development environment to obtain the best performance from the
computer language. inachine technology and development tean: will provide benefits to the BM/C*
development effart in schednle, cost and performance risk reduction. Of prumary import to the
suceess of KBS projects that can have impact on the BM/C* problem is the need to identify and
develop tools that can be ased to support multiple teams of developers. This class of tools wonkd
also inehide some of the tracking of progress necessary for the management and test assistants.

3.4.6 Exploratory Programming Style

Exploratony progranung s the “conscious intertwining of system design and nmplementation”
61, Shed] Recogmzing that some applications are design, rather than straight implementation
problems, the notion of exploratory programming allows the design to surface from experimenting
with the progrim In essenoe, the design and the computer program are developed together.

XN

AN
S
»
LYY
}\:.'n \l
et
q")l:
RNt
0w
T

ORAS A
- 1‘4"/ ~n’ ’1' &l' '.1' ‘®.
RIS RS

=
S
5 5

P

.-C}'I

e

.l".".“ Ba® ba® Bat Aat 8V Tt Bt 020 ' D R B RS- o 8 . A0 70 §'0 fta i $ha" e Bte Aow- - ~

'l N
o
‘]
. L4
. . ;““I
::o 3.4.7 Rapid Prototyping =9
e Y
' -
:: o
KX This technique is extremely valuable when dealing with large and complex systems (e.g. BAf) -~ '
for which it is extremely difficult to postulate a complete specification. Some reasons behind tns ®
kY difficulty are: iy,
) % l'
! e Complexity itsell - a design engineer simply cannot anticipate all of the requirenments of a l,'::‘
K large scale system in advance of the impiementation. oty
' e Fluid requirements - for instance, during development, the hardware changes or the particular
A databases for which the system is to consull changes.
~
| e Human factors - it's difficult to specify user interface requirements in advance Interfaces
A generally undergo extensive empirical testing to determine whether or not they are effective
and considerable redesign to make them so.
q
o
» Regardless of the reason, a large system with changing specifications leads to disaster when con-
't ventional software development procedures are used. Namely, the existing technology assumes that
> the specification is fixed and that the implementation conforms to the specification. However, i)
. if a major change in the specification arises, every phase of the project may have to be redone ®
3 - preliminary design, detailed design, coding, unit test and integration. Of course. the later the F-Ci:
: specification changes in the development cycle, the more work that has to be redone. lu addition to t:}'
3 L. "
N compromising the budget and schedule, the quality of the end product is also likelv 106 be alfected Y
! p 3 g quality ! :
L)

in the rush to complete the system as close to the deadline as possible.

"r
(A
WX

-
b

i With exploratory programiing, the specification is expected to change as a result of the tiplemen- ?9

tation. For example, suppose an initial system specification is generated. Once the system begins o0

. , S) : NN

~ to be implemented, soine of the uncertainties may be better understood, or perhaps concerns will e)

t be uncovered that had not been previously identified. Consequently, the specification is moditied ::\ﬁ

. . . - vt

> and the exploratory programming effort is redirected. This iterative process continues until -~

) p g l L] g
some point, portions of the system requirements begin to stabilize. However, it i< nnportant to ¥ 2

) recognize that exploratory programming may not be an end in itself. Because of the miany revisions .

X g ¥ prog g may ; s
, made, the code may be inefficient and unstructured when it first achicves functional acceptabibity :-‘:*
i\ If efficiency and structure are important issues, the code can be reimplemented nsing traditional WL
{ top-down techniques. By the time this stage is reached, the specification s not hikely to change in ¥ ‘

a major way and the implementation is not expected to be done more than onee

Becanse exploratory programming calls for quick mmplementation of o system, and o~ goneralh
performed by a small development team, computer systems conducive to this activ ity st er hanee o
the programmer’s prodnctivity. Namely, programming tools such as those discussed i the vpevions RN
snbsection must be available to the development team]
.o
7 Rapid Prototypi o
. € "otot ~
3.4 apid Prototyping N
A
. . . ; N
Rapid prototyping involves a process of recychng throngh systenvimplementate voand testing NN
. C e . . _.l-.!
order to determine the validity of a knowledge representation schemse Fosontially e prototy pe RN
a product of this process, tepresents an aspect(s) of the expert systensard qoras ookt ®
demonstrate in what manner encoded facts, relationships and tmference strategics veflect dhe expert's ._':\.j-\.
RRSAY
o
2200
BRG0,
310 AP
YS!
Y '.,..,
\r Tn X o w1 RN T TR w .t P "N N . ‘J'~J'~
BRI A "J-"‘ —rrd N \\r NN 4' o, ‘,{: WAL U AT AL A R AR NIRRT B A N
b N '\t\ "ty N* o ~ “" "rw .‘t¢'l "@..i-‘: ‘N. A . 'v-'_‘- -_.\‘ "-\f\
‘. ~ ~ 's. ~ Lo NS
WM g, ,&.‘.m! \ Wl Tt e A A

3.4.7 Rapid Prototyping

knowledge. This section outhnes the cyclic nature of rapid protatypiug and snccessive relinement

in relationship to Al systein developruent

The rapid prototyping process begins with acquisition, conceptualizacon then formabization of
knowledge into specific (data structures, inference rules and control strat pies The nextsoopinvalves
the implementation of a demonstration prototype in order to test the adequac, of the fermalization
The prototype’s knowledge base is implemented throngh the aid of tools such 2s intelligent editors,
languages etc. which. if not available, are developed Perhaps the ost inportact aspect of the
prototype lies in the seiected knowledge representation scheme

The demonstration prototype’s purpose resides i proving the feasibrlity of the sveteman order o
obtain a financial commitinent from the user and i testing certain aspects of problem defintion,
scoping and representanion of the domam Therefore, heavy user involvement s necessary o the
financial success of the systemn and a strong domain expeit commitient is required to determine
the system’'s accuracy. In fact, the expert usually works along with the knowledge engineer to
discuss problem-solving strategies throughout all the development phases. Ultimiately, the expert
recognizes and points cut imeffective problemn-solving techniques in the protatype

However, the snccess of the prototype also depends on the ability of the knowle ke engineer to
formulate a set of performance criterion with well-defined input and output for test ineasurement
purposes. The idea 15 to facilitate an expert’s ability Lo recognize the prototype’s efficiency and ac-
enracy particularly with regard to the knowledge base and the inference structure. One knowledge
engineering technique inchides the use of predetermined case studies which are initially reviewed in
an interview with the domain expert and then compared with the prototype’s means of handling
the same information. The expert must be aware of the prototype’s purpose to properly ascertain
its functions. Testing becomes more complex when one considers that a prototype only reflects a
fraction of the system’s actual capabilities. Frequently, a prototype sacrifices performance in order
to concentrate on functionality or concentrates on the user-interface and sets eside system func-
tionality. The expert's involvement to test the prototype usually encourages more determination
to gather the appropriate knowledge and alerts the expert on how the system {unctions in order to
know how to fine tune the actual product

A successive refinement of the prototype generally follows the demonstraiion. The prototype has
served a prurpose (o identify errcrs such as incorrect inference rules, invalid knowledge and inaccurate
control strategies. Another cycle throuvgh implementation and testing corrects the errors and brings
np further problematic areas. Prototype development from the initial demonstration to the mature
system seems fo involve a five step process: 67, Waterman|

o demenstration prototype;
e research prototype:

o field prototype;

o production model; an:d

e commuerial svstem

3-20

o %

ey
rs

1S

vy
LY
ri

.{,
Z

Eyve

o 5%
P A4
]

) @

o'y
YY)
S

Y

Py r
Y
P

e p
"y N
I.l.
AR’
2T

P A
R e
*

-".'- -’
PR

A

b BEX
o5

A
iliiq

g
&
’,

,
7

Pl dls p Aot
\".
XA

1

%
- By \:'l &

h T B e B T
?
LANES

i

vy
[
PR

[y
i

r

Cs

'

"
Pl
13
.
»
v
&

v
h o

Yy %

%
A

CXAN
.
s

‘
5

AR

B

o
[l
b Y
[d
k)

®y vy
Yy fu Ay

..~
XAAAAS
L § .

'.'] ‘l’ ,.

r
«

\ 7, "-
A

b

N
%]
"

XXX RN

oA SN
PR]

[AAA ‘

.
oy
P

S5 ST NS

Y
Y

7
", [

v o e
£
r
[N

(,l
p P

L ¢
hih]
p s
<
L I

Mg

TR T o b 2 % e et e at A re - c
X r 2 vy 0 2o T vy gy O
4 a W WL e, A AN Nl el 2 0t A eV atava iy el ol 0" ghe - ToWITUYY [)

Yy \
|" ,
»:: 3.4.8 Sinall Development Teains i:-('\
L) -, A
1‘! I':J‘.
'|' Y
8 W
0 The demonstration prototype, as previously described. attempts 1o prove the feasibilivy of a systens O
for financial support purposes and to test the knowledge representation and probleni-definition “‘-""
.:: techniques. The reseaich prototype is generally a medium-sized program with powerful performance LT
N capabilities, but with a tendency to sufler from tisuflicient testing. The lield protory pean average e
-;:: to large-sized program also displays good performance. However, the lield prototype differs from %\-
| . . . : . on o
" the research prototype in that the system is ivch more reliable because of extensive testing. The ﬂ:; \
£
production prototype tends to perform weii, be reliable and fast. Oftentimes, the production :‘.\ !
" prototype has been reimplemented in a more efficient language Finally, few systems actually reach Nt
" ' _))) g
e the stage of a mature system which 1s a production model used commereially s.$ 'l'
W RV
i 44
’ s VY
! 3.4.8 Small Development Teams N
Ay
kN Although KBS svstems constructed to date are large. they have typically been developed by small -'-.i‘;'-
. :) . §
-"-" teams. In 1982 a survey was conducted with the intent of estimating the number of manyears) .:::‘
I required to butld various Al systems {15, Davis|. In the survey, ten systems were represented, ':::‘ci
:) includicy the weil known MACSYMA . HEARSAY, DENDRAL. MYCIN, PUFF, PROSPECTOR 1.::'
: , X , \
O and XCON systems One interesting result of the survey 1s that every system included was devel- Wt N
i oped by an average full-time manpower effort of two o five people. < %}.
. L4
. A : : \
~ In conventional software systems where the code 1s generally modular and Tunctions are loosely X
» coupled, the project can logically support a large staff. Namely, one or more people can he assigned : \
‘i M : raap - -
v, to design, code and test each major module This concept cannot be extended to WBS systems :: ,'
t where development daes not follow top-down, modular techmques hatt!
. . : : o Q..
: The development of expert systems requires people with a variety of skitls. ‘T'he following breakdown :-f:-
" is typical for a moder tety diflicalt problem domain (67, Waterman!- ‘_\:
. e
/. : - N
o e Domain expert (75t commitment) Ay
P}
. o Senior knowledge engineer (25°0 commitment) Y
R) l‘-h-
" e Junior knowledge engineer (100%% commitiment) R
'-" Q\ l.'
Y : ‘ N
A e Programming support (100% comnutment) -
& Ry
) J s".:"
. The tatal eflort for the above hstimg s thiee full-time professionals Watermon extends this coneepa PY
:’ to address tote complen syatems The simomaey shown below deprats the see of the development AN
‘ TAe
" team as a function of project complexaty Ny
S,
X o
*, :_-\f
" e Moderately difficult = 2-4 people, ."-
a
. . .
5 o Millicult : 50 people o
t .‘-;"
‘e o Very ditlicult 1-6 people SN
.- '-."' 3
5 -'.J';'
pY i “recial that : aure the accessibility an b oo obdaite of the Smain s
. In all cases, it s crecial that a company ansure the accessaitabity an b o : the ton P
- expert(s). The exper (s} nmst devote up to 7570 of therr Gme s the bovnnne teees Db e e [)
and up to half-time thereafter to ensine the possibihity of a successtnd veoqes ’{’.‘
.
&Y
~
g

° }3".?’

\27

* a .'}\- WAt a4 T _— [N 4
FJ af.'.ff)\ SN N e A
L Y NN o o>, LA P N
Ly J'-".'.\-". -, “~ NN AL

%

V" .("

\(,'\$'h\\ %)

<,

P’
K

RNt

SN

EARSI

L 4

LS]
A]
Ay

3.4.9 User Involvement o
EACA A
x"u‘. "
R

Lt A,

) \) i al Ay i . NIYE v n,
The knowledge engincers un the project extract information frem the domam exgert(s) ard encode -s“'\"
this information into the chosen method of knowledge representation The kacwledge enginecrs . -.'u
. . . o R

inay actually construct the underlying framework in which to encode the domun keowledge or .._..:*]
’ . ~ . ",

purchase an off-the-shelf development tool to do so (Section 3.4.5) " !
.]
Programming support can be used to aid the KBS and/or conventional prog-aniiing effort, de- ’\& ‘c:
pending on the project needs. Conventional programming may be needed to mplement the more al- 2

gorithmic portions of the system. or to integrate the syster with existing software suct as databases

or sensor inputs.

Small development teams constructing large systems imply high producivity wheio team members
often work at or above their ability to manage systemn complexities. Nonetheless the developiment
process is strongly influenced by the availability of powerful software development tools (Section
3.4.5) that help to mianage this complexity.

The small development team concept also seems to preclude the necd for frequent documentation
since information can be verbally disseminated with relative ease. Namely, changes made to a
program can be verbally comnnmicated to team members eliminating the nced to generate docu-
mentation such as Engineering Change Orders (ECO’s), revisions to previous system documentation

or even internal memos = Q)
The majority of the case study evaluations shown in Section 4 indicate development teams comprised E: |
of less than 6 people. This observation is generally consistent with the literature. On the other N
.
extreme, where system complexity and magnitude are very high, the size of the development team - ;:
Ay . . . L]
may be mnch larger. For example, the team supporting the ongoing production of XCON, a DEC ®
compnter configuration system, numbers 35. The project team is broken up into four major factions: T,
CACS
:’::.-\.‘-
e Admimistrative support (3); '.:,'.;.‘\.:'
N
) o oyt
e User «cuppart (3); NG
e Techmral support (conventionai software) (6} and AL s B
‘:J‘"."_'.
e Knowledge engineering {21} :'\:-":\
-:.. 'f.'
More netails pertaining to the XCON system are presented in Section 4 and Appendix C. The AR
-. -
point is that the scale and complexity of SDI BM/C' systemns may be comparable to XCON. If - ".
this s the case. roustruction «f systems in the SDI context mav deviate from the concept of a small RS
development team effort '::"":-‘
AN
AN
O
3.4.9 User Involvement SN
S YRS
A nser may be sunply defined as anyone who uses the KBS system, including the domain expert(s), IS
knowledge engricer(<). tool butlder{s) or actual end-users. The tool builders may be involved in N
debugging the svstem in later stages. whereas the knowledge engineer nses the tools available to .‘-:.‘\..'-:.
) _ RN
tmpletpient and rehine the systermnm Knowjledge I end-user can be thought ol as tne person(s) lor Y X
pl 1 Pretine the system k ledge. A | be thought of as the p f A
N ‘x. I-
whom the svetem was developed Although essential, the importance of end-user involvement in P
the KBS systein development process may not be obvious. Consequently, 1t is useful to consider — ot
i . - : . . R
the stages of system development in which end-users can positively influence project evolution: :.r:' ::-
' f - 8
:”:&’ .
AN
S
i
322 SN

P P AT T T T
w:’#v;»%c: :«Efmgg;..zx,
) \ 4,

PR X T N *' :

1);Ji

3.4.10 Documentation Produced

e System definition - Similar to a conventional sofltware project it is esscntad Gt the <vstem
meet the user’s needs. Cousequently, user input must be - onsidered i the system <pecihicaton
phase.

e Prototyping - As discussed in Section 547, prototyping allows the users to abeerve and
comment on the evolving system. A particularly important feature of any svstem is the nser
interface, which often comprises a laree segment of the total syvstem For example i the

Dipmeter Advisor project, the [cilowing breakdown in percentage of code was observed 62,

Smith|:

- Inference Engine 8%

- Knowledge Base 227

- Feature Detection 137

- Support Environment 15%

- User Interface 42%

The amount of effort expended on developing a user interface for the Dipmeter Advisor s
consistent with other projects whose intentions were to facilitate running of the sysrem by
non-sophisticated uscrs [63,58, Stanley, Schwartz]. Furthermore. if the system is cambersome
to use or if the output, such as results or error messages are not clear and relevant, users are
not apt to abandon existing manual methods.

Explanation facilities, whereby a system explains how solutions were reached . are alsc a per-
tinent part of a user interface. A user gains more confidence in the system when he becomes
comfortable with the reasoning process employed to reach a conclusion(s). The explination
data may also be useful to the tool builder and knowledge engineer in debugging the svstem

e Testing - End-users and the domain expert often play an important role in testing by hvpoth-
esizing lest cases and/or reviewing results

The majority of the case study evaluations presented in Section 4 indicate that the user comumunity
was actively involved in system development and that user satisfaction was often used as 4 measure
of system success. If the users are an integral part of the development process, thevre less hkely
to feel threatened by the system or experience the “not invented here” syndromie The resuit s
a group of nsers who look forward to system completion in light of utihziug the cndd product o
facilitate their jobs

The encouragement. of user input throughout a KBS system development process dilfers frons ilan
of a conventional software engineering project whereby a predefined nimber of reviev < are hebd
fixed points (Section 3.1.1). Perhaps increased user participation in the conventional werld woald
lead to fewer nsnnderstandings concerning system fuvctionahity and a hicher snecoss rate i terms

of customer acceptance

3.4.10 Documentation Produced

The absence of an agreed npon model or method for developmg KB~ svster e ~alted i othe

lack of amy standard related to the types and kids of documented imbornun noecessany or the

i

1y
Pl 4
LI

v o

'y
h

rd

. g

-

PP ey Tt ¥

X

. - e - - - ECRLREE
WL ES, \'v.\v\'-.. (AT ALY PR TOA AT ST SR s .’ﬁfn. -, -5.’ '-\,.r "
et E-.-’ - J‘..l‘.,' Elolal 3.,4-._-' A NI

- vy - e RSy
g4 . aa A ‘ P
“te® AL Ut) M CASES A SRS Pyl) »V e ATA . L LW Wy T

3.4.10 Documentaction Produced

development and support of KBS systems. In Bulding Export Systems|3n, Hayes-Rothi, ohe author
discusses problem identification during the Identification stage, defintng key corcepts ard relations
during the Conceptial phase and developing partial specifications during the Forradization phase
All of these events have reference to information that could well b capivred in the form of a
document. For instance, there are numerous references to providing users docutentation on how
to run a KBS <vstem However, there are no details conceriing what level of detail and what kind
of information shenld be included in the documentation for the systen 25, Hayes-Roth]

Other document requirements in the development of KBS systems are discussed i which the
develop-aent of a paper knowledge base, a knowledge acquisition grammar. rateinal knowledge base
formats, knowledge base, inference engines, and interface are all presented as project docnments
120, Freiling . The documentation scheme presents information that resalts fron a six step provess
defined as

o famihiarization:

o orgamzing knowledge,

o representing knowledge:

e acquiring knowledge;

e inference strategy design, and

e interface design.

On the XCON project at DEC, the functional specifications were understood rather than written
because of the ongoing revision process that occurred during the development (59, Scown]. Design
specifications were emhbodied in the coded product since expert systems do not lend themselves to
defined algonthmic solutions where specifications can be written.

The need for documentation on KBS projects has, to some degree, teen driven by the nature of
KBS developments that have occurred to date. First, most KBS projects are small with 2 to 5
developers involved. Because of the limited number of developrnent team mernbers, little need for
documentation exists. The iterative nature of KBS software development efforts also make it very
difficuit to determine what and when to document. It is clear that a problem definition needs to
be agreed to but that implementation should not await compicte definition The introduction of
an early prototype leads projects to produce a working model for the customer so that feedback
and proof of concept can be demonstrated before a large commitment to the project 1s made.
The produce something quickly approach allows little documentation time because prototyping is

oriented towards a pro-duct approach rather than a process approach (as defined in the conventional
software development world)

Another factor aflecong the need Tor documentation s the tools available to support the devel-
opmient of KBS systems Some of the environments available provide a level of sophistication not
generally scen in conventional software developments. These environments include various graph-

ical and windowing tools which allow users to do development in an environiaent which does not
rely upon extensive paper documentation.

3 24

AR R Sl A Sl Tl st S S 30 P
PRI NN BTN IN

o)
gt LR Vg W
B AR SR Il S SRy Sl ph
TN N IS N O M AL S N M A :v-:\-a-,\f_a-.-.__._\

) . o - »
W A L _('\-"-.'\ \-,\ .';-J_\ v

‘I"'o’!’t‘. l‘:‘l'-l SN, v w s X N s IUm O T A LA N 0-8%0. 2 We, ¥ oy,

WAL,
22 4

'-l
P
.l..‘

. e ,
)ISI\‘ (e ‘I‘“
LAY Bl ol g

v
Xy
LA

L b ol
['4
2

| WA
' "‘."f‘."‘k:f 7

"2 LS,
F X e K

-~

wew® ¥ s

s il

ANS
1;"4'".:':({{‘

1

.
Ld

e
'

3.4.11 Tosting

.,..
S
'l '.'

» Yy

Finally, the research and development nature of KBS projects put them in a category where tech-
nology feasibility is of the essence and not the ultimate deployment and support of the product

,,.
0

In these cases, emphasis is certainly not on documentation since management ssipht Cakes o
different flavor and users are not expected Lo enter the picture untal some mdetetmmate future

point in time. e

3.4.11 Testing

.
s
'~

)

Y
W\~

% 5

P

) Testing is the comparison of a system’s actual behavior with its infendad behavior,

AN
[

) XA
:":"‘I..I'.;\J

In conventional software development, a developer is typically presented with a system specification
which is a statement of the problem to be solved by the new system and some idea of what a solution
to that problem might be Implicit in such a specification is a functional statement of the systems

LR AP Y
s

@

. . . . o " AN
behavior under a number of real or envisioned situations. The developer takes that svecification :N'_':\"'
. . N
and embarks on the software development process involving several steps: ':"f'”:)'
'a:.':.r
A
e Requirements Definttion a first level decomposition of the problen and envisioned solution 2
and an allocation of requirements from the system specification to the highest level components ::.'_-,.":
of the system. A
\::-Q \
LSt
)'i\
S)
. sign.
High Level Design NN
o Detatled Design. F_".f.?“;_
S
"o e
N
e Coding and Debugqing (or unit testing) in which program code is developed and structural, -:.:::,,-;
. LIS
as opposed to behavioral, errors are detected and removed. e
F At
»" - .‘.
e [ntegration, &
e
RHAGY,
A SAY
) . , . o RSN
Following the integration step, a completed but unproven software system exist« This systenn N7
" : .)
should exhibit the developer’s interpretation of the system behavior defined in the speciication T
, . L . " NN
I'here is no assurance, of course, that it is the problem solution suggested by the specitication - '.'
. . E)W;‘
In paralicl with the development team, the test team translates the customer spectiication into test SO
. . . , . S WY
procedures that model the systemn behavior in terms of stimulus; response pairs (as in “Pnsh the ‘-'_:\',u:
. " v . VE e e gy . L)
button; the light turns green” or “Enter the file name; the system responds ‘no such fife’.” Thic =p04ed,
RAYAY
) Process mvolves ‘"..'\»-‘\
NN
@
R
o Requirements Defimtton in which the specification is examined for essential requirements GaiNg "
whether explicity stated, implied, or derived during the design process. :,::\..
~
NN
o Jest Spectfication, AYA
o
. .
o I'wedure Generation. AN
i
L0,
\' &, -
n s ~ A
325 \:'_:.‘
AR m
Y
L T I S \J"’
PRV AF AT MENENEN AT AL O
.t LTI S) e
; AP AP N PRI P4 DAY
AL A INOON
: RN YA AN PG

LAY ‘-\

[
. -

2l L U S

3.4.11 Testing

Because the conventional software model usually requires that the test procedures be approved by
the customer prior to the initiation of any formal validation/testing, the procedires are considered
a correct interpretation of the specification. The test process consists of comparing the software as
built with this “right answer.”

The ability to specify functional behavior, as is done during conventional software development,
implies that the problem to be solved is well enough understood so that executional details of the
resulting solution are known. Specifications do exist in the KBS world, but they tend to be problem
statements without much of a hint as to what an acceptable solution might be.

As they proceed from the problem statement, KBS software developers often enlist the aid of
“experts” to guide them in the direction of an acceptable solution. This permmits the generation
of a system which displays some approximation of this expert’s idea of solution behavior. Because
they desire independence from the development team and because the number of experts is limited
(frequently to a single individual), a similar approach in the preparation of test procedures is
available to the test team. Indeed, even if a different expert is available to assist in the development
of the test process, the potential for disagreement with the other expert exists. The question then
becomes one of determining the “right answer.” In this case, unlike that of conventional software
development, the customer is a doubtful arbitor because of the fuzziness of the original problem.

Even presuming that some approach toward generation of agreed-to test procedures can be found,
additional problems plague those charged with testing the KBS system:

e Doces the system correctly reflect the knowledge given it?

e Is the knowledge given the system correct? Who decides? Systems can be envisioned where
this may not matter, at least not in the same way as conventional software, since the product
may be self-correcting'. In this case, the question may become “When the system discovers

that it is incorrect, does it move toward correctness by an acceptable amount?” Again, who
decides?

Just as Al software is urged towards solution behavior by prototyping, the testing of Al software for
battle mhanagement should be prototyped. Examples where this could be applied include DARPA
Stategic Computing Programs for AIRLAND 2000 and the NAVY FRESII program. Additionally,

upgrades to the PATRIOT and AEGIS systems incorporate Al technology. Experiinents with their
test programs could be undertaken.

Development of a test advisor knowledge based system would enable the test community to analyze
the test requirements for systems and the results of tests more efficiently. This would allow fuller
test team participation from project inception and give the benefit of a learning curve that included
the prototyping phase of system development. Such an innovation might then permit combining
the fairly common “build a little, test a little” Al philosophy with a new “test a little, build a
little.” This latter, implying examination of evolving requirements and partial systems, is as much
a driver of the system result as the evolving system is of the test process. There is a synergy in this
effort to define goals and criteria for test, tolerance and performance. As both test and development
teams identify and commit to these, the problem to be solved becomes less certain. This strategy
would correlate well with a spiral approach aimed at minimizing system development risks.

© A eview ot oh ewrent lerature and Sander's survey results indicates that self-correcting software ia not a
common ecurence.

7,

Paen i
gy
4

l»1l y‘}l‘fﬁl
’. Q e ,.f 7,

"
)

y X
[/

X

_.. ~
s %y Py

v
)

L3R
’

o

e

R

I{'
ATALN
a4
a v

S At ety e v
G

b

¢
g

7,

%
o

Yy
7,
7 _1

?
8
o

>

'.
.
1

NN

. “..»

v
0
.
[2
.
-
[Y
L3
»
[]
.
»
A
&
)
J
«
'
'
1
v
1
1
t
3
«
t
]
.

o
.I
L4

05
)‘L

%S

2
V

» l.'l;
O ¥

L]
fﬂ' Al

‘.;5
&

3.4.12 Managemoeut Control Mechauisins

5

4

R g |

:."‘?
[A

: 3.4.12 Management Control Mechanisins

KBS projects are typically accomplished by small developent teams and therefore do ot require .‘\f:_\r ¥
K ;
: the extensive management control mechanisms that are usually necessary for large scale DOD -‘\\,:
system programs. Most Al research and development projects are developed by a single team with :\‘;'-.‘,
. . o oy , i
very little interface necessary to other organizations or systems. Their control usnally consists : =5
. . o . : A
of periodic technology reviews of actual versus planned progress. The review process is generally #7h R}
informal with no predetermination of what information will be discussed. This ix in contrast to T
! the typical large scale DOD software development program which has planned management and e

{ product reviews at varicus stages during the development process. These reviews are often extensive

requiring a large resource committment.

. ..
’ .»».“o

The management techniques employed for KBS systems is complicated by the iterative nature of
KBS development. Mastery of the traditional software development model has hardly been attained

P
and KBS systems enter the scene to present a whole new problem set for modeling. It is clear that .
few managers even understand the world of Al let alone know how to manage the highly complex \.';
iterative process. Considering the difficulty of scoping a domain within an expert system and the L'.',-

definition and building of small increments, it is difficult to conceive of a means for managing oA

and controlling a total KBS development project from requirements to product deploviment and

" retirement. For that reason most KBS developments are actually level-of-effort developments. That :
is, only near-term schedule, cost and performance objectives are defined. Progress is then measured A
in the near-term and not over a long span af time. Since there are no proven software cost miodels :{:
for estimating KBS software cost and schedules, predicting the future is even more comphcated ::;

The lack of a broad historical data base of KBS software costs and schedule also offers no solution e
or aid in predicting costs and schedules. E::'%}\
Within the Al system application area, there have been few systems that have been developed under :'E:":
the constraint of schedules and costs normally associated with DOD systems. KBS acquisitions, :}OQ:.:
which call for the development of systems for delivery to the DOD within a given timeframe, are _\.~_..;:'
Jjust beginning to appear within DOD. These procurements are normally of a standalone expert ; p-
system which has little or no interface with other systems. It is also noteworthy that these sy stems ::_,'\:‘:
are not real-time to the same degree as an embedded Battle Management Command and Control :\:,Q:':\-
System must be. :::“::‘::

‘ . o , . N

y As KBS system applications grow in size, there will be an increased need to divide the probiem N V0,
solution into manageable modules in order to develop Al systems under dictated scheduies and - _‘.
costa 1t has heen suggested that benefits be derived in the maintainability, testability aud speed ;\f:':.
arcas by applying modularization [47, Orciuch]. Management of large projects can potentially :"'\";
beuefit from a modularization approach by providing meaningful snbsets of a systen on which a ::-;._'
given team can work on. One of the experiences from a project the size of XCON s that bringing -l:.t-:; '

someone new onto a large project can take a significant amount of time to become fanubiar with
the design. Modularization should allow ndividuals to become productive sconer
.~-
_ o ‘ LN
The key to managing a KBS project or program is adequate msight and visibihty noe ohe o e
N N . -'- .'
opmient. process in order to assess the status and to predict the futare of the prearan at any green A
.
point. in time. The evolutionary nature of the KBS development process only fnrther comphicates o ame
the managetment job As KBS applications continue to expand and mcrease vy sizeomanagenon! o
\ o
will be faced with further challenges i imanaging and controlling the development process N
AN
AT
'_.N‘.\
"".w
327 RGN
l\‘
L
ARG,
RN
o
J.'f".
2l

»

3
.
o
[]
»
¢
-
¢
-
-
K
'\
¥
'
1
"
»
¥
'
(
r
v
»
»
¥
'
v
»
o
.
X
1 4
v
»
o
.
*
L4
.
"
¥
’
‘.
§
l..,
< -

)
-?.-.'/"

»
<
r
t]

o

A%

3.5 Difficulties in Developing Al Systems

LN A 28 Ay

PR AR
AR
oY

h

v

L'y,
-2

Table 3.5.1 2: Artificial Inteliigence Software Problerms

-,
N

e}
L4

\‘-"

P

A
x

e
N
‘
-

ARTIFICIAL INTELLIGENCE
SOFTWARE PROBLEMS

7,

»
AR

o,

-

Problem Statement

l. The rapid prototyping method does not offer clear guidance &
on how to produce a well-enginecred commercial product

2. Little knowledge exists on how to manage the transier of u
progressive and evolutionary technology

3. There only exists a limited number of engineers in Al software

development .
: : - o N

1. There is a need for multiple, specialized reprecentatives in N

the field of Al .-:.-:.r'\‘-
5. The knowledge is often ill-specified because the expert canne NS)

always express exactly what he/she knows abcut the d-:mam. .)
6 With rapid prototyping, the systemi is always in a state of

flux. R
7. There exists a lack of knowledge regarding testing of Al sys- S '

tems.

8. There often exists voluminous amounts of information in the

definition of an expert system. -\:':_ _':
AT
Frear
- I. fl..-.--
. .. . ot
3.5 Difficulties in Developing Al Systems -t
-
:s._"s.:;\"-
The following section is concerned with identifying Al software problems cited from a literature e

study undertaken at Sanders Associates. Inc. and the case study responses received from the
Sanders Al Questionnaire. A comparison of Al and conventional software development problems is
made. The literature study examined major problems that appeared most frequently in different Al
software subcategories which are defined and outlined in Appendix A. The case study problems deal
with those stipulated in one or more responses. The comparison of Al and conventicnal software
development problems compares and contrasts common software problems and issues.

3.5.1 Al Software Development Problems Cited in the Literature

Certain problems in Al software development were cited in more literature sources than others.
Table 2 5.1 2 hsts the eight problems which appeared with the most frequency. (See Appendix A
for a complete examnation of all the soltware development. problems identified in the literature
sonrces). The remainder of this section examines each of the frequently identified problems in more
detanl

LLs

A
",S".',{“

hY

3-28 :- &)

L T T T R T T T R e Y T v e i = e =,

3.5.2 Al Softwae Problems Observed from the Case Studies

Al software development 1s a relatively young field 1 comparison with conventional sotiware de-
velopments. Therefore, diflicuities with tdentifying and deternvning the best means to develap Al
systems has arisen. The problem @ compounded by the fact that sne of the most widely acccpted
methods for Al soltware development resides in the use of rapid prototvpimg which otfers no diear
guidelines on how to produce a well-engineered commercial product.,

The lack of well-defined software standards oi!

of Al software development. Al manuger, are confronted with a progressive and evolutionary
technology which by definitini entails livtle grudance on how to properly manage prople and the
effort.

methodologies Alters mto the proper management

A by-product of a new technology can pe found n the limited number of expertenced perconnel
Al software development is hurt by both the lack of available and, or experienced engineers or
managers. In order to develop standards and methodologies. Al needs specialized personnel to
determine an apprcpriate sct of standards to effectively manage and guide an Al software effort

Knowledgeable «ugineers could help improve the knowledge acquisition process, the main bottleneck
in Al software dovelopment, by providing effective techniques to communicate with the domain
expurt. The .coci3s of extracting knowledge for incorporation into a knowledge base i time- ry
consuming and difticult. Adeguate gathering of information depends on the knowledge engineer’s
skill at extracting information from the domain expert who oftentimes lie difficalty cxpressing
what he/she knows about the domain

J,II'I o, 7
[l 4

The success of an Al system depends on the ability of the knowledge engineer to formulate a set of _:\
performance criterion with well-defined inputs and outputs for test measurement purposes. With o
rapid prototyping, the idea is to improve an expert’s ability 1o recognize a prototy pe’s accuracy . o
particularly with respect to the knowledge base and the inference structure Since the prototype ::':?.&
only reflects a small fraction of the system’s capabilities, and uncertainty s a major factor i the ':-.:t.-
selection of a solution approach, testing becomes more complex. Also the constantdy changing -:“-::
requirements introduced by a systern which is in a constant state of thux, contoibute to the inabihity A
to eflectively test an Al system. Once again, the process involved in testing Al systems and the &
lack of knowledge regarding testing of Al systems seriously affccts the AT software development "_Ew
effort. N
-~
The last major Al problem identified concerns the need to delimit the task of a problem when :\
building an expert system. Knowledge-intensive problems mayv not be clearhy bounded Unlees the Y
abundance of probleni-solving imformation ix bounded, the role the expest siotom will ploy v
not. be suffictently defined (o produce a well-defined and eHective sy-tem .
3.5.2 Al Software Problems Observed from the (Case Studies t'-:
o
Many common Al software developrient probletas can be identified between the ciewe s tadies garh-
ered from the Al guestionnaire {see Appendix B). The mast frequentty menioned sroblens were o
e n lnck of experience i managiig expert systems, :
.
e a need Lo fice know ledge cugreers from tasks which take wway dropr e i -
. » a lack of domain expert cotmmtment which s vital to cvsien siccess e T:.;_} .
~ieE
a'ay
;.t:::-
.

.

-

L BRrE XL,
N @ KRN

P

2.5.2 Al Software Problems Observed from the Case Studies

e
hY

XA
~f‘v b
(’."l

e the need for better testing methods.

A

¢

2

Ty '-’-'c

Ilowever, a variety of other significant problems also surfaced with regard to:

¥ ¥

-5 .
[g

e the need to develop a prototype;

73

the ability for a system to support the views of various experts;
the need to allow for requirement changes;

the need for continual financial support throughout the Al system development effort;
documentation; and

overhead introduced in real-time systems by shells.

An examination of these problems follows.

Al lacks the required historical background from which an appropriate guide on how to develop a
well-engineered product can be extrapolated. Consequently, management does not have the guide-
lines or the experience necessary to help in the administrative process of Al software develcpment.
For example, the system’s success depends on management’s ability to effectively allocate and man-
age domain experts and knowledge engineers. The need for a domain expert’s time commitment
cannot. be over emphasized. Appropriate knowledge acquisition, effective problem-solving tech-
nigues and schedules are highly dependent on the expert's knowledge and availability. Without a
committed effort by the domain expert, schedules are delayed and further expenses are incurred.
Another problematic area occurs when knowledge engineers are not provided with management'’s
support to spend the necessary time and effort to design the most appropriate knowledge represen-
tation and inference mechanism. Some suggestions have been to encourage the knowledge engineer’s
creative mind during the prototype phase by freeing him, 'her frem adniiniscrative duties.

v/ .
hY
f..s’- bt

Dp's a2
\
r"/"(".f

"

-'.,f

Another problem area for management involves adequate testing and maintenance of the Al system.
Unfortunately, Al software tends to be more difficult to test because of the complexity involved
in demonstrating the feasibility of concepts with regard to requirements. Generally, because of
the inexact nature of Al systems, multiple or even thousands of test results could be the correct
responses to one requirement, and thousands more may exist. Consequently, the need for a more
appropriate means to test Al software has been recognized. With regard to maintenance, the need
to modularize the system has arisen for larger systems to ease the maintenance task.

N G VRN
, I { L] { . ' .
oL ®

oy

Other problems associated with Al software development concern user commitment to the Al
project, system modifications to accomodate multiple expert ideas, the overhead introduced by
ahells, and standards needed for documentation. The user’'s financial commitment to an Al software
development effort is highly dependent on the development and demonstration of a prototype. Lack
of a user’'s commitment to a specification and architecture for systems with embedded Al software
has been identified as a problem. The need to allow several experts to examine the prototype
oftentimes results in a modified or adapted user-interface. A third problem involves the overhead
introduced by shells in real-time systems. And finally, a discrepancy exists on how to document,
what to include in documents, and whether documentation is even necessary.

i
W

rre
.
'.’\-

P

.’\".‘:)
N LY

5"
[

s

Py
KA
X

l\:’
13

27

Sle

) o-_.t

3
,
NN

.'.--{-.' -, -,.-.'.
VAl R i F AN AT AN

RN S NN
"':’ oA -."s‘“s".». Y

o

YR
-,

[1y gt Ay g Pate el g ata pt el At AR O Al LA AR AT oA S A e A S 0 o AN AU A SRR g A gk AP AR e b Ben et Sk Ao S bl b Ak | TXRYIY'YYX Y "'1‘—' <
)

S
-J‘\ .
» \l‘::&

LY

Lataly
L
o 5 o
3.5.3 A Comniparison of Al and Canventional Software Developient Probleins o N
\
RO
1 o
: . . : o
z A general concensus among the responses obtamed from the case stadies s that problems were M
[, significantly reduced by the flexibility thalt rapid prototyping and success refinement provides »
. " ;
! Changes to the requirements, a natural and expecte! scenrance with Al software development .1{":‘- q
oy g D
were facilitated through s process. &: S
[t
p. St
o
- -
3.6.3 A Comparison of AT and Conventional Software Development Problemms
N gav |
o
T - . _ A
Many similarities and differences can be found in a comparnision of conventional and Al software -:-F:\-:
o : - "
development problems. The following section atterupts to compare and contrast some of the most ,&“‘R
apparent problems. Four major software categories, based on a report 1ssued by the Department of ';-\. e
Defense (DOD) Joint Services Task Force on Software Problems, fe port of the 17017 Task forec on E
Software Problems, [17, Drufleti shall be examined = Software Life Cycle, Enviroument, Software "l:' %
0
Product and P ople. R
L
A Lriel summary of problems common to both Al and conventional software development {otlows o '::
Pl Y
phad
L
¢ ineffective comnunication between the users of the system and managers; ;-;"-,;-,"
LGNS
YA
: : b
e lack of skilled software development managers and engineers; ,:.}:_J'\'
A
¢ methodologies are in a state of transition: Q.
RS
~
L . A gAY,
e acquisition of tools is not fully defined; KA
S
. o . .) ‘S
o difficulty determining amount of testing appropriate to cach hife cyole phase, ‘r,'.r;.r"
e aRal
. 4
o lack of adequate Quality Assurance engincering practices ICAOACA
: > ALY
':'..:-'.'u"
L . , TN
e software is a iabor-intensive technology . AN
EACAY
A SN
Y
e software is reinvented, s
... ®
Y]
NI
o salsafac N
e user sabisfachon,)
.::-.:;\':-.
o lack of well-detined metrics, :.{‘_-:\'.-"
RSN,
o shortage of skilled system engimeers software engineers and mmanavers
e problems with users who do not hinve Grengh Gime to spe bon the provee
Each of these probilems, which are discussed an subsequent paraesapis sathon the S seftware

categories, has a significant impact on the software development proce-<

3t
N N A A N P N S N AN A AN S AP A NN A R R R R T RS TR T P TAT) Noarad
RN ANt 2 A T R A ‘\-4._,.- R .N('s A NS A R AR Al "-s‘Q"\"' v
o P AT S M MTAC NI > o~ T N A N AT AT D Sar
Y, ‘\‘y'*"‘\"\-N-'-. . LN LSRR A S LG NG S
. I e 4 '(‘f'"\- LN o o o 'V"."\."';' "\'f':.".’:ﬁ: ™ W
A W AT AT A gﬁ'ﬁ\p s

e o eRtaea’ iAok R gt N ot A~ e e At e’ e owe et ose’ lac haY e’ et ALt AR A A" et iAe® e o’ Ta” he" b’ et iy’ At SO T Mo b’ 0 .';‘::i.‘
AW
HR
'-"\’-.' !
3.5.3 A Comparison of Al and Conventional Software Development Problems ;.;5:’)
e
:'-“3$]
3.5.3.1 Software Life Cycle NS .ﬁq
®
The Software Life Cycle refers to the relationship between diifferent phascs of the software de- *:-“:‘.;',,:.
velopn ent process from initial requitements definition and analysis to systcn deployment and :’;_ ~ X
maintenance. ‘The main components of the Life Cycle category are Requirements, Management, ,:‘_':\}
Acquisition, Product Assurance and Transition. Interestingly, many of the probleins that surface :;\-.'._::.,
at the requirements phase, such as cost and schedule, documentation conmuncation and changes -
to the software are also characteristic of other life cycle phases. in particular management and AR
acquisition. A\ brief comparison between conventional and Al life cycle problems follows. :;E;:.:
As previously indicated, some Requirement problems involve changes n software, cost. and sched- :.::";:':
ile, documentation, and communication. The affect that requirements changes have on system ;:'.\f\’:
development due to vague, incorrect, or missing requirements differs between conventional and Al 'L';
software. In conventional software development, requirements are frozen at some predetermined R
point and any changes involve a formal process which may or may not permit the change. In fact, :""-(:J‘
a minor requirements change could result not only in a large software efiort to implement the new ::_
requirement, but could also introduce additional expenditures and schedile delays. These cost DN
incurrinents are even more significant when one considers that oftentimes requirements are defined 00
according to available time and money. In contrast, Artificial Intelligence systems are developed ---—-_\‘
with the underlying assumption that requirement changes will be incorporated as new information :;;. "
is gathered from prototyping. Al systems generally are developed in incremental stages of defining ;\v\‘_c-\.
requiremeunts, developing a prototype, and redefining new requirements based on the additional %};‘;:
information obtained through research or from the prototype. Therefore, requirenients can be ex- N ::’
pected to evolve. In fact, a major goal of Al systems is to encourage and expect the system to e
change. _.::?:;:
Effective communication between the users of a system and engineers 1s another major requirements :'::.':'f. -:
problem. In general, an engineer’s comprehension of a user’s needs is reflected in the ability to ade- ::"::::\..
quately document the information. Although conventional and Al software are siniilar with respect PN

to communication problems. Al is affected differently by lack of communication. For conventional . ¥
software. an understanding of the product being developed 15 essential to the system’s success. In
contrast, the basis for inany Al systems, in particular Experi Systems, is an expert’s knowledge.
Therefore, the knowledge engineer has to communicate well with the user as well as understand
the expertise.

Manag-ment of software encompasses various aspects of engineering: managing of software, people,
and skills: avaitability of tools, metrics and models. A characteristic of both conventional and Al
software developiment teams is the lack of skilled project managers. Al development is particularly
affected becanse managers with or without Al development experience have no clear guides on how
to produce a well-engineered product.

In both conventional and Al soltware development, the acquisition of software and tools is not fully
defined One problem is that conventional software developments are not always carefully tracked.
With prototyping. Al systems are always in a state of flux which makes configuration management
difficutt Toals are not necessarity a required deliverable, nor are they budgeted for in conventional

software To AL tocls are not necessarily identified before implement ation NN
Similar problems in Product Assurance can be found in conventional and Al software development. d
.o . . . n,
ifficutties arise in determiming the amount of testing appropriate to each life cycle phase and r,\S::.'tr
N
o
?\l\c"{
O
] e
3 32 Kw‘\
.
"-{,._‘\"\
Loy s & Ta® L A A" -..--..-.'- - g T m W™ T -, w -.'c . LN . Ty O T Ca Y, - ._‘v W W g . _‘r_.- - - - P ‘.‘.l s
A o R N o T e N I R N N Wb N v
> e N ~ ORI NS M A A A e R A L AT RAN LA S LRA RN NS AT AT T e ey VN A ~
N A O N R S A A R R R A PN "-."\"-s"xﬁ\‘}-fd' LA AT A P L e S A
R N A N N M A A A A M R R e NN, " N NN AL,

i
A
PRI
o
I'\I.’~l a
3.5.3 A Comparison of AI and Conventional Software Development Problems ;‘{.;:::
e
PRGN
defining an adequate means to test requirements. However, unlike Al systems. conventional sofltware Q\‘:’ W
can generally be tested except where requirements are vague or incomplete In contrast. oftentimes o -?
no definite method to check whether Al requirement conditions are met exists ;: ,::
‘ Presently, conventional and Al Software Methodologies are in a state of transition. Conventional E:‘b". \
| software is concerned with upholding standards and conventions for requirements, design and cod- o ¥
ing, while Al is in a state of defining a methudology. o
Overall, many common problems which deal with communication, requirements modifications, iy
tools, and software development are characteristic of both conventional and Al software. On the :"'::f-"' 1
other hand, each of the problem categories vary based on the software application. Where commu- :'r':’jj-f :
nication with a user is vital to conventional software’s success because requirements arc frozen at :':‘i::"
some point, Al software works around the communication problem by developing a prototype which e "
serves to further understand and properly implement the requirements. As a final example, test \ -\;.:;‘j
methods and approaches have always been a debatable subject in conventional software. Likewise. I
Al software suffers from the same problem. However, Al differs in that unlike conventional software b "
where some adequate test method is usually available, a means to efficiently test Al software does ::J'b-""
not necessarily exist. Pats !
e
S
3.5.3.2 Environment _;:E:.
S
Environment encompasses tools and methodologies involved in the development and support of 3\'}‘."
computer software. The five main categories described are: Disciplined Methods, Labor-intensive. i‘,v-!z
Tools, Reinvention and Capital Investment. ::\Ef
A characteristic problem of conventional and Al software is the lack of adequate quality assurance ':'*S."E.
engineering practices. Conventional software suffers from the need for improved disciplined methods ’;\;:.l "
-

to measure software quality particularly when requirements are not well-defined Al software differs -
in that software quality tends to be difficult to test or measure at all. In fact, no true scale availahle
can determine how high a rating an Al system can achieve.

'.li‘
’)Imv

20
U

R
Another environmental problem, the labor-intensiveness of soltware technology, is apparent :::&
conventional and Al software. A need to automate manual processes with an ultimate goal of RS A ‘
minimizing manual processes has been recognized. A recommended means of significantly redaciag ~ .':
an Al manunal process is to automate the process of acquisition, organization and structuring of f:‘.-;:'::
knowledge. '5_-\"_"_'\':'

R TN

Reinvention, a problem in conventional software, refers to the inability to reuse functionally simuilar :’_:-::':

soltware developed for other systems resulting in higher development costs. Al software, bult f-';.j-::f-::

incremental stages which introduce small extenstons, relies on the concepts of reusable software o

within a system. However, reusable software between functionally similar systems is guestionable :::"
Sufficient capital investment in conventional and Al software could significantly reduce environ ::.:f

ment problems such as reinvention and lack of or inadequate methodologies and tools No general ::

recognition of the importance of capital investment to improve support environments and thus A
reduce problematic areas exists for conventional software. Al software suffers from a general lack -_.‘ .

of funding for Al system development. :;:::.;
SEAN

~

333 -.::E:-;

.2
e A S
RSN , i
n.n".‘l. : > A N -) : WA . : W . Ay

3.5.3 A Comparison of AI and Conventional Software Development Problems

3.5.3.3 Software Product

Software Product deals with the operational embedded computer software and the materials nec-
essary for life cvcle support such as: requirement and design specifications, source code, test data,
system generation data, unique support tools, etc. This section compares and contrasts major
problems between conventional and Al software for the following categories: Doesn’t Meet the
Need: Software Metrics; and Design Attributes. Presently, no common problems between two
other categories, Documentation and Immutable Software, have surfaced.

A problem with software occurs when the system does not meet user needs. Conventional and Al
software depend on user satisfaction for a system’s successful deployment. However, each differ
in the manner in which users must be satisfied. Vague or incorrect requirements in ~onventional
software seriously affect the final product. Oftentimes, errors in requirements resu!t in an inade-
quate system which does not meet with user specifications. An interesting contrast is Al software,
which developed incrementally, encourages and enforces regular meetings wish the user to discuss
and update system requirements. Therefore, requirement errors are not a serious hindrance to
the sy~tem’s deployment. However, Al software appears to confront a problem with the user’s
initial definition of the system. Frequently, a user’s concept of the capabilities of an Al system
exceed present day system development possibilities. Conventional and Al software do have one
common user satisfaction problem. Both lack effective methods to determine the system’s quality

and therefore do not have a means to estimate or predict a user's level of satisfaction with the final
product.

Software metrics attempt to provide analytic models and empirical data on software to help with the
selection of software engineering techniques, to estimate development resources and evaluate future
costs \ problem with conventional and, in particular, Al software is the lack of well-defined metrics.
Poorly defined metrics resuly from the fact that various approaches to conventional software exist
and no specilic Al methodology is available. Given the variety (or lack) of standard engineering
methodologies, standard metrics are difficult to define.

Systemn design should provide an acceptable programming solution to problems identified in the re-
guiremenits document. Some of the major problems in conventinnal software design are inadequately
designed requiuirements, incorrect assumptions made by the engineer, and ambiguous requirements.
In each of the situations, the system’s ability to be modified becomes crucial. Some of the reasons
for poorly designed software can be attributed to lack of a design methodology with a top-down
hierarchical breakdown of the system and lack of consideration for human engineering in the design
of the system. The result can be a system that is not necessarily capable of handling changes easily

and with minimal cost expenditures and/or schedule delays. The final product essentially will not
meet with user requirements.

Unlike conventional software, no formal methodology exists by which Al systems can be developed.
No clear guidelines on how to efficiently produce a well-engineered commercial product through
rapid prototyping is available. Nonetheless, many of the decided problems in conventional software
design, which cannot easily handle requirement modifications for poorly designed systems, do not
appear {or are remedied) in Al systems. As a result of the cyclic nature of Al systems, where
software is evolved repeatedly from requirements to design to redefinition of requirements, tncorrect.
avsten specifications are incorporated and updated continuously. In fact, perhaps the main problem

","-'1“"‘:

Hrr A
N S AT et
N’-sj&'-"-ﬁs AU

o)

l“.

h

P
o3
5%

L

B
s
tN“.
n_¢
ot

¥
b
[

]

.
<
wh=

4
» A

P

NN Y
Ny

b I
P
LS T

P

LA]
v
‘umﬁ
NN

e

ol

5 -

2
}-.

.
%

8 x

£ 7 &
y
¢

e
Y
)
»

P

®
.
1‘\

::\.‘:*.
oy
-

Iy

5

Pl

)

s
%

L3

<
b

.
.

.1
-

5 %
-'I)‘

e

L7

R R RN
)
.

N

T

MRS

ESNSASLNN

prlrinry

‘L&‘-";i

AL S v
P PLERE R AL

AN R R R

Y

3.5.3 A Comparison of AI and Conventional Software Development Problems

with the design of Al systems, when considering user needs, is in defining the knowledge base with
optimal problemn solving techniques.

3.56.3.4 People

In conventional and Al software development, two problematic areas have arisen as a result of 4
shortage of skilled system engineers, software engineers and managers: the number and availability
of skilled professionals. Engineers with knowledge in various computer-related liclds as well as
experts who can successfully lead software projects are needed for conventional and Al software
development efforts. As a relatively youug field, Al cannot provide a sufficient number of expers-
enced managers and engineers. Strong management does not exist to guide an Al project throngh
completion and there are not enough engineers with Al software developiment experience.

Another conventional and Al software problem is a user’s skill and availability to eflectivels com-
municate a system’s requirements. Al, in particular, is hurt by users who trim knowledge to fit the
knowledge structure; who are not able to express their knowledge; and who do not have cuough
time to devote to the project.

4

&;':s

[4

P
& 08NS
Ear 4

e,

“I.l..-

o
&

['.’
'y % s
2,

A EERP AN d

P g]
¥y)
‘,.-"I:’l;,'.‘.',

&

l'.l, o)
N

.,',.‘.,.,.
v l-
vy

o
@y

> -
i

54 5

»
e
.

5

.‘1"‘.:
(5

v,

g
-

£
.

PR W WL WUV U IV W W W L WL R NN e G LG T e, - e " phe g P

SECTION 4

Case Study Results

4.1 Case Study Data

Tabular data pertaining to the case study evaluations are presented in this section for the following
participants:

1. ARINC Research Corporation;

{:\:b:‘-
2. Boeing Computer Services; :-:E: .
, o . RN
3. Boeing Military Airplane Company; LORUATY
®
4. Brattle Research Corporation; :-"::_i'\
NN
5. Carnegie Group, Inc.; “:"i:‘;"'
8 AT
A
6. Digital Equipment Corporation; :E;;E.
!, -
7. Expert Technologies, Inc.; NSNS
R
8. Frey Associates, Inc.; W :_‘: ,
-"I ;
9. GTE Data Services,; e N

10. IBM Federal Systems Group;

,
AT

11. Inference Corporation (2 cases);

PRy

.
12. Lockheed Aircraft Service Company (2 cases); ’

1
7,
'
[4

13. Lockheed-Georgia Company;

'.5:

14. The MITRE Corporation (Bedford, Ma.);

7. -~
I g
15. The MITRE Corporation (McLean, Va.); AR
P ‘»'}
L T e
16. Northrop Avionics Division; S -.--
: A
17. PAR Government Systems Corporation (3 cases); .'-,,.'*';\'C
. QNN
18. Sanders Associates, lnc; RN
’_‘\’,\f\-ﬁ
AT
. . N .
19. Schlumberger-Dolt Research (literature source only); P
@
20 Software Architecture and Engineering, lnc. (2 cases); and Nk

4
v
.’.

r
'
s
@
gl
Inia
4.1 Case Study Data ENEN
A
Nl
21. Texas Instruments, Inc. s,
The tables present a common set of features with individual applications for each participant. The
manner in which the data is codified facilitated the analytical process of ferreting out common
characteristics, general trends and distinguishing traits. Specific observations relating to such as-
pects are presented in Section 4.2.
Prior to evaluating the tabular data,the reader is encouraged to compare the cases in a qualitative
maunner since:
¢ Many systems are in different phases of development. Consequently, the responses for a
system in an early stage of development may change as the system matures. For example, a
system that is in the phase of demonstrating technology may have had little user involvement.
However, once the system has demonstrated feasibility of the technology, users are apt to
become more involved.
¢ Many of the systems relate to different domains and applications. The features pertaining to
the development of a tool many be justifiably distinct from the features relating to a complete
stand-alone system.
e The concise responses required by a tabular presentation of the data may, in some cases, be
misleading. To obtain a better understanding of the systems studied, the reader is encouraged | @
to review the case study summaries delineated in Appendix C. AR
LA
;‘\-.:,'\
Al
NI
Y
o
O
o
N
1-2 w
AL SO G S N SR Sl s i L e
AT TN f\f_'.'f_\ _\:N'.‘\f.\f.:;:'.\j'.}
AT AN Y AL 2) N
D AN N A AN AN N2 NG,

Vel r ni Bl e Bl Ba® BV o0t s gd B s N .

L R e T

(STAMP)

v

4.1 Case Study Data

Table 4.1-1 : ARINC Research Corporation - System Testability and Maintenance Program

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
‘T'ype of Knowledge Representation

Inference Mechanism

Requirements Analysis
Approval Mechanisins
fterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation

} Configuration Management
Convenboual SWolnterface
Tools Used: Requireients Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test 1ata
Self Modifying Code

Generic tool
Electronic warfare testability
Field support
Internal Research & Development
2
4-8
Very active
Not applicable
Yes, internal standards
Rules and facts
Inforination theory and dependency analysis algorithis
Yes, for the rehosted version
Both managerial and technical reviews
Yes, 5 major architectural changes
Yes
Yes
6 months
2 years field model
Yes, extensive
Not after initial rehosted system
STAME ig written in conventional software (Fortran @9
No
Fortran 77 compiler/debugger, and HIP-1000 operating system
N()
"Testing: module, integration testing. 2 month user trial period
Not. applicable
Actual usage

No

A
XN
5

e

®:;

XX
g
€

4

Ly
5

. l"“‘
0
(R

L4
£,

1
.

AR)
P XS

s
'$\
f‘at’

'y
l,l
.'}-.;.”;'f‘\.‘

“. RV T
h t’.:"'f..f&
1Y »
P

]

AN
PR
SO S
AR I P

Pd

e Y
-+

»
o

~ ~
v 5

s
-.,l.
l' l. -

~Q°

P/

[
2

X N1,

e

554

’ -

{?
ool
L J

!"'

.,
&

]
’
3

bt 1 . T
4
b2, H

P
P A

o’
s ¥
-
A

3

G,
XA

£ " 3
.
I"l
{'
v

[
L}

>
[}

P I.." P
PR

a:f-*
:

i
-

A

et I

L

4.1 Case Study Data

Table 4.1-2 : Boeing Computer Services - Strategic Force Management Decision Aid

TN AT, &
l.'

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data
Self Modifying Code

Replanning decision aid
Employment of strategic forces
Development
Internal
Yen
i
High
Knowledge acquisition
No
Frames, logic & rule based
KEE supplied
Yes
None
Yes
Yes
Yes
6 Man-months
System not fielded
Some - informal
None
None
None
KEE, TI Explorer
None
None
Expert acceptance of plan
Test scenarios

No

Sy

L)

. -" .._ -,
I_ﬂ'

_"..'.'1 o

e
R
e 1
P

‘@ .

[l

Id
by
[4

>,
'

. -.. v'. s

-~y vy
LY A)
’ -%"‘-

Table 4.1-3 : Boeing Military Airplane Company - Automatic Target Recognition (A'TR) Program

4.1 Case Study Data

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Regnirements Analysis
‘Toolg Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data
Self Modifying Code

Interpretation - image understanding
Target recognition
Feasibility demonstration
Internal Research & Development
Yes
Proprietary
Influenced & directed development efforts
Minimal expert consultation
Yes
Frame-based with rules
Forward chaining
Yes
Continuous internal review process
Yes
Yes, minor rule changes and major user interface modifications
Y(‘S
Proprietary
Proprietary
Mostly informal except for annual report on state of research
Gntity checkpointing and file hackup

Knowledge Cralt supports direct calls to Lisp cade

No
Knowledge Cralt on Symbolics processars

Nao

. :u\n.'
H .

Results verified by user and consistent with requircments A
A
Test i [[AN
Test mage inputs - also lired every rale DN
.\":?\‘
Not at this time '_\:ﬁ-;_\

I A T T A
AR ""\."'sk‘_’\ R AN A A N W AT AT

B AT AL A R
NI N

L

l. .:"-u::f,
Y RN,
@
..-.'- \
N 4.1 Case Study Data A ;
B e
U W
AN
R
B AN
. &
i Table 4.1-4 : Brattle Research Corporation - Text Interpretation System __.1
g 3
AR
- FEATURE APPLICATION e
- - A
Problem Category Text interpretation :: 2
Domain Business information e
‘. Current System Phase Development '
A Type of Funding Venture and contract
. Experienced Al Stafl Yes - all mewbers ° T
Size of Development Team 12 overali >
- .-
A Level of User Involvement Slight - more later)'::
. .)
" Domain Expert Role Not applicable N,
o - . -
) Formal Development Procedures Yes, internal 5\
' Type of Knowledge Representation Proprictary (frame-like) .~ ,
- .._- -~
- Inference Mechanism Inheritance & deduction - :::
. DAy
. Requirements Analysis Yes A
T A,
, Approval Mechanisms Yes - both management & technical RN
.) ®
Iterative Development Process Yes N
. o
: Design Changes Yes R
R\ .f . \ -
™, Prototypes Built Yes A
~ . o
\ Development Time: Initial Prototype 1 year A
Development Time: End Product 2 years (estimate) AT
2 ‘-‘ '.-:_.
: Documentation Yes - formal specs & design documents g
X . O
y Configuration Management Yes r:.-
. : RN
Conventional SW Interface Yes - in development '\'.
o Tools Used: Requirements Analysis Prototyping r_;:.
M R
~ Tools Used: Development Symbolics environment r-;
e,
& Tools Used: Testing Yes - built own tools L
. . AV
- Formal Test Procedures Blind & regression
rs . o ")
. Testing Criteria Absolute accuracy BN
4 LA P
': Test Data Text articles :.-'::"‘
, e)
Self Modifying Code No poend
Sy
.- ‘.l“r
; i
. \'...'..
3 LA,
| \._:'.:
- Y
4-6 Lt
-
RS
A A" A A P A A AT A AT A A e et . A A AT et e e e Rt A AR m e S AT AL L e A A A A ot
":-)‘:‘\- T \._.\.’:- :-‘:__:'\ \\f:_: ,:x :. :__\ .?‘ by .‘_\:: - : :: :.\-.\ :
DS LN . ")

’Q.W s
S
et

AN
1
gty
e
. . TN
4.1 Case Study Data cmaa Y
NN
N
a I'. .‘ ...
.::.-kf"-l
L,
. - : ®
Table 4.1-5: Carnegie Group, Inc. - DISPATCHER Project PR
shig
NP
PO0N
DA,
FEATURE APPLICATION .:,:,,.:,
Problem Category Monitor and control :‘-i\:::
. o
) . . Sevav
Domain Factory automated materials handling
. %y
Current System Phase Completed - production model kﬁx‘ﬁ -
.
. . > g,
Type of funding Commercial contract Qr‘:,ﬁ
LA
. e P
Experienced Al Staff 2 " j-;’h ;
Size of Development Teamn 3 [4
§
- A
Level of User Involvement Present but passive o A
. . . . v X t
Domain Expert Role No experts in this domain ;::0‘ ,.:3
N ‘
Formal Development Procedures No .:w.f o
Type of Knowledge Representation Production rules p-'-.'\
Lol
e % R
Inference Mechanism Forward chaining . ,\j";.
. gt
: . PN
Requirements Analysis No :;:::.r:a:
=,
. v e N N
Approval Mechanisms Informal ROV,
Iterative Development Process Yes -.‘_*.:'
P
. L™ ’ -
Design Changes Yes, to accomodate customer requests :_: N
e e
. - AR SN
Prototypes Built Some critical modules KOOSR
SN
Development Time: Initial Prototype 7 months TNt
Development Time: End Product 6 months RPN
o :"--\‘
Documentation Specification and informal memmos o
N
. A A
Configuration Management No AN
. . . -~ -u_ Lo
Conventional SW Interface Use of mailboxes for (' and BLISS SN
Tools Used: Requirements Analysis None RS,
--' l\ -N -
Tools Used: Development Code generator for database rontines - \’{ ‘
e .. FAICRX
Tools Used: “Testing Simulator YR
', g
-
Formal Test Procedures None ®
Testing Criteria None ESASAN
LI R
R ol
Test Data Simulator NN
L]
Self Modifying Code No R0t
RIS
.
NN
NN
:l’:...::.\
it)
NN
AN
4-7 PLIN SN AN
“.',,'a‘..'_b
R R R S A R S C A A R A Ak Sy L N A oy i Sy UL W SRl S T, A N VI P T PRI . RS T N GO
o N(;;"f‘_f o o _'},'I..- N ..(_‘.__..r__-*_.f_a___aﬁ."\ .‘_n‘.‘d‘_.!_‘d’: :’; e ACAC,N N ‘_./-\.:\. X _\.r.‘a\._\ T L
VO QU PN, -\S-.'-s*\"\."w"'\i-"-." AN O S N N N SRR L Ve, CRER AT ANy ‘\{ N T T T
L) e T T At S (L S R AN o AN AR AN AR AN

PECTEENE TIPS O Y N,

4.1 Case Study Data

Fable £ 1 6 Dagtal Egumpment Corporation - XSEL NXCON Syvadem

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data

Sell Modifying Code

Planning and control
Computer systems configuration
Production mode
Internal
Yes - trained internally
35
Heavy
Multiple experts - various roles
Yes
Rules
Forward chaining (OPS5 interpreter)
Yes - problem definition
Informal - management tecam concept
Yes
Yes
For major mods only
5 months
12-18 mo. for 1st installation/quarterly upgrades now
Architectural level, comments in code
Yes
Yes
No
VAX11/VMS, OPS5, DBMS + some “home-grown”
Yes, for code & unit test phase
Regression testing/Problem reporting system
Qualitative only
Customer orders- real and hypothesized

No

N
o

fa0)
ss_-.‘

L4
\'N Ay Ny

2 N N
Y
P

-’"t":)

AL
NN

o
ok
i _.A_.'au'

» }"
b]

< ",{‘v.

S

B
y ¥

55

Pt

b

.
'3
I

by

!
£
1

v ’.,:
1‘:1
a_ v
L4

‘,‘
F

x.?- ’,
2

’
‘I

g
O o
2EE
t Y
P f‘_{~

I
A
o '-.f'a‘.

/2

'}
’

i{‘p’"‘.‘n)

4«
'll'tl'v e S
S;'A-' . ..F..I"- P

o
X
ARG

ML b 2

T A R e WY W T e T W Y

4.1 Case Study Data

Table 4.1-7 : Expert Technologies Inc. - PEGASYS

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Toola Used: Reguirements Analysis
Yools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data
Self Modifying Code

Automatic pagination
Yellow Page directories
Delivered
Internal
Yes - 3
8
High

Knowledge acquisition

Semantic network of frames
Heuristic search mechanism
Yes
Yes, at project manager/senior engineer level
Yes
Yes
Yes
7 man-months
69 man-months
Yes
Yes - proprietary
Yes
KEE, Knowledge Craft, T1 Explorers
Yes, at lirst
None
Yes
Acceptance Test Plan (ATP)
Simulation

No

s
. ,l
ST

‘s "2
’

[R)
@ N
RNCACR NN

LIPS i ol o 4

.o
o« v
.

A
55

X :{ﬁ-;:r’{
.' Y .}({"}")1%

4.1 Case Study Data

Table 4.1-8 : Frey Associates, Inc. - THEMIS Management Information System

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Fixperienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
C'onfiguration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data
Self Modifying Code

Natural language processing
Database query
Completed - commercial system
Internal
Yes, 1 out of 12
6-12
Medium-heavy
Not applicable
No
Rule-based
Forward chaining
Yes
Informal
Yes
Throughout system development
Yes
6 months (1 man year)

10 man years for final product
Yes - extensive (user’s manuals etc.)
Yes, source code and version control
Yes (Fortran and user interface)
None
InterLISP
None

Yes, built-in test, regression, auto. error logging

Internal testers and user agreement with conclusions

User defined or hypothetical queries (correct and incorrect)

Yes

R R R A L I
e L Y e s
f"» e *\-w-sk‘-‘hﬁ‘f},

4,040,509, 0 A AN N

(o
%

o
%]
Ay

” -

' -
A
P

'S o

(“.
e
[

9y
4Ll

v

L%
¥
XX

-"-l‘.:'f{_
}J'.;f(

W

)

rrﬂ?-ﬂ’f.v.““. a0 ig ate oty o la aie oty e’ et oo .

4.1 Case Study Data

Table 4.1-9 : GTE Data Services - Central Oflice Maintenance Printout Analysis and Suggest
System (COMPASS)

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Teain
Level of User Involvement
Domain Expert Role
Formal Development ’rocedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisins
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Inter(ace
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test 'rocedures
Testing Criteria
Test. Data

Self Modifying Code

" A M W e
NN Ay
v .\J\:he\;\f &)

Fault Diagnosis
Telecommunication switch hardware
Limited field study
Internal
2
2-7
Small - Domain Expert was supervisor of end-users
1 week per month met with knowledge engineer-
Yes
Frames and production rules
KEE supplied
No
Informal - supervisory level
Only during carly phases
Some
TW()

100 man-months

106 man-months

Technical notes and Knowledge Acquisition Rules documents

Implemented a software control knowledge base
None
None
KEE
LISP procedure to do testing in bateh mode

No

Independent experts evaluation of COMPASS ruics and autput

Hardware error message files

No

4 11

'. -
' -

Ly
SII

\Y

Ll

RN Y
L

L]
2.0

[S o8 o SN ok S ol o

1Y

!
15 ‘l
» h

A
3

k.l
"
%

..“.
';’If
£

>

a_ti

r

x'_"-’ <

l'

PR
U |
.}'.

oy

R AP

e
4 5

f"-' '1"!.." [l
AR TS
?Eﬁﬁﬁf
.
N
PRk AS

.

st
e
> '-"-?r

<

A AN
Pl
2R
P Y)
ey
£70¢

‘,“

SR
L N NS
PV 4
oy b A4 Y

P
R
rSlS L
&

Siooav
.
RN
ARRRRY
%}

et o

[

_WFalufhlb o

P

gl

PPO P

Pt b A 3

4.1 Case Study Data

Table 4.1-10 : IBM Federal Systems Group - Fault Diagnosis and Resolution System (FDRS)

FEATURE

- APPLICATION-

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing

Formal et Procedires

Loty Canonn
Test. Data

Sell Modilying Code

Fault diagnosis
Satellite ground-based maintenance
Installation & test
Independent research and development
Yes, 1
4
None
None
Yes
Production rules
Forward and backward chaining
No
Standard research approval process
Yes
Yes
Yes
6 Man-months
20 Man-months
Yes
Informal
Yes
None
Commercial & in-house shell
None
None

Py nanue evaluation of 1ile bases
Simulation

No

CRT TR ORIV

|
=

i
A

5

g [d

Jo

5

x.;.
A

N

P A,

2

LRI
2SS

[N

- &

2

a
5
)

t

"
]
»
.

T 2% BN |
'E;-’-.'-. Ny
Pl ..':'I-'

v
".l'

.‘
.’
o

4

I' l‘.~7
’ 1\;1

&
T

T

p
TXX

AR

i

¥
H

Vg !.j..

.o l'/l"ln. '\‘
i)

LN D
l" .‘
-
®LL %
- -

‘., .
“

DN

e Y AR ',/."’

%

l

/PR
2z

ll".'(
MY
PP
f-’ {ﬁ'l'*

¢
‘l

NI
L3

4

£
~®

'

a8
¥
’
.

b &)

- g

"
i
L

AP Y
l.~n

VN

":’ LY Th)

.
'y

P
g,

4.1 Case Study Data

ool
Ty,
AL
Py)
NS
Table 4.1-11: Inference Corp. - Authorizer’s Assistant.)
":lf Ny
A g N CATE - .. .' .
FEATURE APPLICATION J:*,
Problem Category Intelligent assistant "v-.::\
A
Domain Charge authorizations Y
Current System Phase Delivered system I",-:; .
Type of Funding Contract :::::::-j
Experienced Al Staff Yes :.-f'.;);; !
Size of Development Team 8 - ‘e
Level of User Involvement High "" .':
‘ 3
Domain Expert Role Included in entire development process iy "
Formal Development Procedures Yes k‘\,,‘\v
axal
Type of Knowledge Representation Production rules)
Inference Mechanism Forward chaining DCAIA
. . NG
Requirements Analysis Yes AR
ESLRLY
. NN M
Approval Mechanisms Yes ,‘-{:’\,-]
Iterative Development Process Yes Q.
N
Design Changes Yes k:::.:.
NS
Prototypes Built Yes :::::J
Development Time: Initial Prototype 15 Man-months 3:
Development Time: End Product 87 Man-months % *%
A
) A
Documentation Yes A
AN
Configuration Management None .‘f,s‘j:‘:
. R
Conventional SW Interface Yes e
: . ®
Tools Used: Requirements Analysis None AT
PR
Tools Used: Development ART and Symbolics developmient utilities d:i:
T
Tools Used: Testing In-house batch test bed facility ;::: !
A ‘
Formal Test Procedures No "-‘3"-
Testing Criteria Results compared with expert conclusions {._7.:,‘-"_:'
M.
Test Data Sets of test cases :;::.: 93
Self Modifying Code No :_:::?.: ;
S f‘
o

]
s

oA

P S)

4.1 Case Study Data

B¢ BRI S A i iy Sty g

Table 4.1-12 : Inference Corp. - Medical Charge Evaluation Control (Medchec)

FEATURE

APPLICATION

Problein Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development ‘Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
lterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype

Developnent Time: End Product

Documentation
Configuration Management
Conventional SW Interface

Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data

Sell Maodilying Code

Fraud Detection
Medical lusurance Clanns
Development
Conteact
Yes
3
High, they were the experts
Defined requirements of system
Yes
Frames and production rules
Forward & backward chaining
Yes
None
Yes
Yes, mostly low level ones
Yes
6 man-months

12 man-months
(7 calendar months)

Some
None
Yes
None
ART, Symbolics
None
None
No formal process
Live data

No

4-14

LAY
ey
'y
v

ik
RPN
MR WA

,‘
I" %’
'.l&’s" <
@ I

o
{

AL
pd

»

P
.‘l
i

* .

IR RN

e
\
>
]

[N

LN
Y

v
* 2

‘:

S
Arrile

]
".

‘.‘
&

- .
. '."l_'t'-_ o
R R

et e
4

‘t_)
.
e

IIL_ ‘

.Y}
X

h]
AR

XA
L

":'..f PR
*s

"‘. 1
wa

»
TN
o

PN AARY
ayok/ :'1'}{\;'
PSRN

P A AN
NN Y

f"l,-f:" {J z.')

e, S @

i.1

A
oy A
/7]
|

A
{. I‘
Z, P

.

’
v)
".’.‘/‘l v

.,'
v

»

/7

Y

»
1]

N e
LA 4

.l’l [
' &
Fd

A T S T)

AT T
X0

7’

{
Y

I d

Table 4.1-13 : Lockheed Aircraft Service Company - Expert Software Pricer (1SP)

4.1 Case Study Data

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interfnce
Fools Uned Regumirements Analy sis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test, Data
Self Modifying Code

Software costing
Sizing of software
Complete
Internal
No
2
Moderate
No expert used
Yes, internal
Frame based
Backward chaining provided by LES
Yes
Yes
Yes
Yes
Yes
4 man-months
12 man-months
Software Requirements Specification
Yes
Yes
None
LES and conventional compilers
None
None

{ /- 80% of actual size and costs

Existing systems with known size and costs

No

1

T S T b e A

15

o .
- ARNTLTCTA Y
o - \)
AN -.';x\:'.'i-.\\".
-

Lok o W

e,
it

o

e T T)
4

,’,::'4

g
AT
P

12 ’-
",

a2 R IOV] P A P P WA PV T W L }":.u.
') '\.‘.\
% 5
)
! ®
' A
k4 4.1 Case Study Data oS
N AR
‘l 5'-'::.'
N
: AT
) Table 4.1-14 : Lockheed Aircraft Service Company - Frequency Hopper Signal Identifier
RN
; o
y :..::.r
Yy FEATURE APPLICATION IO
- — - Y
;. Problem Category Detection & characterization of frequency hopped signals 1.;_\. g
Domain Signal identification vy
o Current System Phase Completed prototype _ :-':-.
Fu . .':'
~ Type of Funding Internal \'{ ';
Vo At
:'.. Experienced Al Staff Yes it
: .
Size of Development Team 1 ¥,
.’ . :
)‘: Level of User Involvement High §|
S Domain Expert Role Small - knowledge acquisition ™ \
B,
N Fcrmal Development Procedures No L
5 Type of Knowledge Representation Temporal framework =
) '- ~
~ Inference Mechanism Temporal logic and pattern matching SRS
.
[} . . Lk
N Requirements Analysis Yes el
N

* i tas ™
Approval Mechanisms No ‘ ‘.‘

‘ Iterative Development Process Yes ::-E‘.‘
¥ *.-f'
* Design Changes Yes l‘.ﬂﬂ-\‘:
- Ny .

. A
- Prototypes Built Yes N
: A
Development Time: Initial Prototype 9 months K
] Development Time: End Product System not ficlded :-:\'-:.
N : N
P Documentation Yes e
> T
N C'onfiguration Management No E'_-:._-:
-\ = M fay ? Tat
Conventional SW Interface No o
: . : oy
5 Tools Used Requirements Analysis None AL
.,) *..
o, < . -)
- Tools Lised: Development LISP .:;::_.
. Tools Used: Testing None ::t:f
4 Formal Test Procedures No -8
. Fee
N Testing Criterta Consistency and improved performance :._‘;-:_
A
.. Test Data Simulation :.*-;::
¥ o LG
3 Self Modifying Code No I
i _®
- el
! \I \.

RS A A A 5 2 A AN PR SRS AL A N 2R i Sl e b At A s R bl Bt >
(-2
R
0
. R
b 4.1 Case Study Data -:.:;?..
P ey
4 O
' RO
Sy
. . . - £ h
Table 4.1 -15: Lockheed-Georgia Cotmpany - Pilot’s Associate Y Y
« . " +
h FEATURE APPLICATION .:,“‘" :
[Problem Category Intelligent assistant ::'}‘:-'
q . - NN,
Domain Combat avionics AN
~ Current System Phase Analysis N
9 'I'"d"",
t Type of Funding Contract (US Air Force) : '.:-P:-{
. Yo
] Experienced Al Staff Yes 65% of the development team) 3
- \
b Size of Development Team Over 40 j B &
i Level of User Involvement Heavy !
{ Domain Expert Role Several experts involved in knowledge acquisition 3‘\ G
AN AT
Formal Development Procedures Yes :;:‘_..'“ N
LNy
Type of Knowledge Representation Varied B ®
3 . N ’. g
Inference Mechanism Varied NN
. . »
Requirements Analysis Yes ,x‘_:::-.
S 'h
Approval Mechanisms Informal and some formal reviews scheduled :f.‘:}'-
B "
Iterative Development Process Yes @
p t}.r-;.‘y
{ Design Changes Yes A
- oo,
. RS
; Prototypes Built Yes _‘-‘_ :
Development Time: Initial Prototype 2 years {estimate) ,:}::.;?:-
Development Time: End Product Not completed ;} >
Documentation Yes Bty
Y
Configuration Management Yes - CMS AN
. . DASANY
Conventional SW Interface Undetermined RS
Tools Used: Requircments Analysis None - _"_.‘
ll‘-..-- o
Tocls Used: Developiment ART, LES, OPS5 .:-:.:-:::-
“.-" -".-‘
Tools Used: Testing None so far - N
] Formal Test. Procedures Yes RIS,
. . . ®
’ Testing Criteria Satisfaction of system requirements plus ST
Experts evaluation of system performance ’-',’:,,-
. l. ’l
Test Dnta Sunulation ::._-’
LY
R .'.
Self Modifying Code No R,
! : ®
i
ANy
: N
4-17 NN
} -
S

A P N L R B N P P R N P I I PRI I I A
A S S 4‘\4,\\/’ PR ST A0 A
'-"' ’,-'If~ . Ny f -

l\. h

S

4.1 Case Study Data

Table 4.1 16: MITRE Inc. (Bedford) - Liquid Oxygen Expert System

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase

Type of funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototy pes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Farmal Test Procedures
Testing C'riteria
Test Data

Self Modifying Code

Fault detection/diagnosis
Space technology
Final prototype complete
Contract (NASA)
Yes
2
Heavy
Active in system development
No
Frames
Frame-based
Yes
Informal - domain expert
Yes
Major throughout system development
Yes
6 months
2 years
Nothing formal
No, did tape backups
Yes
No
Yes, Symbolics Zetalisp environment
No
No
User agreement with conclusions
Live sensor data

No

4-

3 M
AANASAS

. o R "‘\;\:,N_':\ Sy

-V Py .ll. f.. p DO s 2

L A L A A S T Bt A A A ST AN

LSRN *\"::‘;c = ',,\"-.:,\.f,-.i-.' L

v % R S e T e T
WA .

18

> L LA T

BN, .

R R R A A VA S UL COE LN
Ny 3\‘ < }._f.f.,:.‘-\ AN

\}\.

» Lol »

YL R LS NS S YA LY
o e

r
dep

et
4

-{.
'l‘:'-‘r
3
Ry

l. <
(4
-

'y
P4

«
Ly
oo

/4

£y

<
o

R

&
SN

y

. .'Icr'-'/
5 4 4 4

o'y
Y

r
%
P 4
A

2

X%

A ¥ NN W W W W W, . ATRT AT N

4.1 Case Study Data

Table 4.1-17 : MITRE Inc. (McLean) - ANALYST

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing, Critena
Test. Data

Self Modifying Code

Interpretation /assessment
Battle management
Completed - production model
Sponsored research with follow on contract
3-4
5
Domain expert, review and test
Active in development and transition to field
No, used rapid prototyping
Frames and rules
Frame-based and goal directed
Matching of problems to Al features
Informal; domain expert and program managcr
Yes, adding knowledge
At least one major change
One
8 months
18 months
Listings, nothing formal
Prior to release: build level
No
None
Micro-compiler for Lisp Machine/ built others
No
No
Domain expert and user satisfaction
Simulated data stream

No

o

b T2 T T T T
A
LS enE

&
12 -'l .

..
e
i

I“‘."l

Ay
’

[d

, r 2 l‘
R
?;.sl'

o

1wy e ¥
l’l

[4

vy

A
A

: .o'
@ S

w b

P

PRE RE RS
(I]
»

v
'{'
oYy

g
-I
+)

'l
-~
Y

‘N
l.r.ﬂ

v
D

R
A l' 1
AR

L
1}
L4
.‘l
]
.
f‘

s
.
'
[
«

Y hY
b

Sy

F L
N

S

4.1 Case Study Data ~

I
g
&
Table 4.1 18: Northrop Aircraft Division - Expert System for Target Attack Sequencig (ESTAR)
FEATURE APPLICATION
Problem Category Decision aids
Domain Combat avionics
Current System Phase Completed feasibility prototype
Type of Funding Internal
Experienced Al Staff Yes
Size of Development Team 4
Level of User Involvement Active, throughout development and testing
Domain Expert Role Very active for knowledge acquisition and testing
Formal Development Procedures Yes, conventional framework
Type of Knowledge Representation Production rules
Inference Mechanism Forward & backward chaining
Requirements Analysis Yes
Approval Mechanisms Yes, frequent reviews and several demos).
Iterative Development Process Yes "':-":'
RO
Design Changes Yes -‘;.:'_',"
Sl
Prototypes Built Yes AN
Development Time: Initial Prototype 6 months .
Development Time: End Product Not applicable :'
Documentation Yes, enforced N
Configuration Management Yes %
Conventional SW Interface Not at this time .
Tools Used: Requirements Analysis None T~
Tools Used: Development. LISP workstations using Common Lisp -
Tools Used: Testing Yes, built-in trace facilities Rt
o
Forial Test Procedures No v -:".1
AN
Testing ('riteria User satisfaction/expert assessment ';\-1
SRS
Lo
Test Data Usage . .i‘
Selfl Modifying Code No AEAIS
®
s v
:\‘:\"'
na
,_‘?\-',1
!\‘ I.. -
St
.-;2:.’.:
4-20 AL
T
. v
P T R} e e .« LISy MNULT AT I N e " A N 'f .n’-f-*'*\.’ .’:f""‘f 'p ‘f"- - ..‘-r‘-'v. I'-“ S
R A e T L Y A RN e
R S A N S 0oty A HA R A ”, - Yy - y Wi
SRR A i Y ¥ 'ﬁﬂ NI ANy Y
,‘vﬂ “\ f;(:*l."n.\ Y %\ v NA"‘-L P P L

- .. v

T

L e L am i B S S

e o a3

4.1 Case Study Data

Table 4.1-19 : PAR Government Systems Corporation - Cost Benefit of Tactical Air Operations

(CBTAO)

FEATURE

APPLICATION

Problem Category
Domain
Current System [’hase
Type of Funding
Experienced Al Staff
Size of Development Teaimn
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisins
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Comventional SW o laterface
Tools Used: Reguirement:: Analysis
Tool: Used: Development
Tools Used: Testing
Formal Test Procedures
‘l'esting Criteria
Test Data
Self Modifying Code

Decision Aid
Cost/benefit of tactical missions
Completed prototype
Contract
Yes
3-6 computer scientists & in-house expert(s)

Moderate

Define the problem, Knowledge engineering and test prototy pe

Yes
Inference network of production rules with confidence factors
Goal-directed
Yes
Informal - project staff
Yes
Yes
Yes
24 man-months (including preliminary investigation phase)
System not fielded
Yes, extensive
Yex
Yes, support environment
None
In-house developed Expert System Shell and graphics tools
NU
Yes
Experts and potential users ratings of system
Scenario

No

LA
,;, "
vC@,
A A

5
L]

MYYY
P X AR

U R
e ls
» S N

EA4
"y,
2,
.

“'l e “x
‘l’

o

S e
5

P

[A N
¢’ / .":"‘I {l:’
A

oK

=
o,]
NN
o,
o

.
>
o

"’
L
~l ‘l

Y
Oy

B &. A o S

’

L

Lyt
. A |

L

NN EN

";,'; '
‘ -

L
s

4.1 Case Study Data

Table 1.1 20 © PAR Government Systemns Corporation - Duplex Army Radio/Radar Targeting

Decision Aid (DART)

FEATURE

APPLICATION

Problem Category
Domain
; Current System Phase
Type of Funding
Eixperienced Al Staff
Size of Development Team
Level of User Involvement.
Domain Expert. Role
Formal Development Procedures
Type of Knowledge Representation
] Inference Mechanism
Requirements Analysis
Approval Mechanisms
) Iterative Development Process

Design Changes

Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test. Data

Self Madifying Code

Decision Aid
Target identification/classification
Completed prototype
Contract
Yes
3-6 computer scientists & in-house expert(s)
Moaodetate
Define the problem, knowledge engincering and test prototype
Yes
Inference network of production rules with confidence factors
Goal-directed
Yes
Informal - project stafl
Yes
Yes
Yes
36 man-months (including preliminary investigation phase)
System not fielded
Yes, extensive
Yes
Yes, user inter{face and support enviromment
None
In-house developed I5xpert Sysvem Shell
No
Yes
Experts and potential users ratings of system
Test. scenario

No

4 22

o
N :*\'
SR

“

xR
."- i)

{l

‘s
&Y

L v
o5
I‘E.',

5
e
7

4
12

&
]

By

=

_ -
,1.;
P

IR A

R ‘i?.l.’"
s

LN L _ﬂ '\

"(,1. oy

»
.
[&

e

P
p

<

%

<
L4

Y
E

-"4
R

L)

"n .‘l)l JL

A.\.S‘
P 4
Y N

€

ras
o~ % %
:’:"s'
RAS

l.l'.. "v)'-,'-."- '
[AEAS .'- "-
.AJ'..‘"- "- ,.n L

...-
P

s
“l-

;.
n
-
S

A

L

&
3

“u_» - 'I"l
"'f'?'::'- ;1
A A
RS P

7,

Y

e N A

ot :‘.'x'-. 5
&

AR AAA

P4
a
S

Y I

Sopee

- P Al
sﬂ .
;' -

LY
'y

2,

%

2
.)")1

¢
-
a2

Lot g
~

L

670 e e R INLC N TR R % d s - '~ gt y rae Ll a't g ¥ al "o ke AR Dt Al et Gah e o), Y "

cne X
4.1 Case Study Data ‘:3’,'{'\-:
N
NN,
WA
A
S
Table 4.1-21 : PAR Government Systems Corporation - See and Project Enemy Activity (SIPEA) " } .
i o {
A
FEATURE APPLICATION .:f o
Problem Category Decision aid .:~ A
Domain Battle situation projections]
AT
Current System Phase Completed prototype ._:;..:'.",:
aiS
Type of Funding Contract :{,:-:'_\-':
RV
Experienced Al Staff Yes N
Size of Development Team 3-6 computer scientists & in-house expert(s) 3 “
\
Level of User Involvement Moderate 1“\5:‘&
A ¢
Domain Expert Role Define problem and test system \;?.:
)
Formal Development Procedures Yes _ W
Type of Knowledge Representation Object oricnted ;,q. - '
Ly R
Inference Mechanism Inheritance ,.bé:g
Requirements Analysis Yes ! 'I':!:‘
. . o
Approval Mechanisms Informal - project staff "'\‘::
P Iterative Development Process N/A 7;4';,‘
! ot
] Design Changes Yes :;:::"
b o
} Prototypes Built Yes ':-:* -
oK
Development Time: Initial Prototype 30 man-months b2y ._
Development Time: End Product System not fielded NN
'.‘n’.'f\f
Documentation Yes, extensive) "'-.:’_a \
AN
Configuration Management Yes o~ é}' :
. "
1 Conventional SW {nterface Yes, databases and support environment AN
Tools Used: Requiretents Analysis None '
1 Tools Used: Development. Flavors -.
1 S
b Tools Used: Testing None -
b -
] Formal Test Procedures Yes
Testing Criteria Experts and potential user ratings of system ;‘:
] Test Data Scenario .:{
Self Modifying Code No :_::

4.1 Case Study Data

Table 4.1-22 : Sanders Associates - Test Assistant (TESS)

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of funding
Experienced Al Staff
Size of Development Team
Level of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requirements Analysis
Approval Mechanisms
lterative Development Process
Desigr Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements analysis
Tools Used: Development
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data

Seft NModidy iy Conde

Test equipment assistant
Countermeasure systems
Mature prototype - (unding cut
Internal Research & Developinent

None
3

Low

Knowledge definition
No
Frames
Frame-based and constraints
No
Informal
Yes
Yes, user interface and knowledge base
Yes
6 months
Not applicable
IR&D plan, listings, frame knowledge

No

No

No

Symbolics environment & some internally developed

No

No

User satisfaction
Daily usage

No

RS

[~."""‘ ‘J
N,

s

“s e
NN
Ly

"
o>

ok
»

-

%

{

XA
vuN

A e g

TR T T wgTRTerw ul

g
L]
4.1 Case Study Data ?:\'-%‘h .
s
-
Tabie 4.1-23 : Schlumberger, Inc. - Dipmeter Advisor System ;E::.;
gAY
FEATURE APPLICATION TR
Problem Category Interpretation b :-‘.‘
Domain Geology - dipmeter logs 2 _,{-'. '
Current System Phase Completed - commercial systemn :'}.::E:é
Type of Funding Commercial :v;"::',
Experienced Al Staff Unknown o ‘.,;
Size of Development Team Questionable 4-6 (assumption) _:\‘; ":
Level of User Involvement Active in system definition ;'_:',::':‘
Domain Expert Role Defined Dipmeter system knowledge f:g:, :
Formal Development Procedures No ~ J\
Type of Knowledge Representation Rule-based E';\-\,-'\'
Inference Mechanism Forward chaining i X
Requirements Analysis Yes % 3::.:
Approval Mechanisms Informal (domain expert)) —‘
Iterative Development Process Yes <
Design Changes Major throughout system development
Prototypes Built Yes
Development Time: Initial P’rototype 18-22 months & o
Development Time: End Product 4 years ':‘_'-:’:
Documentation Informal (Assumption) -\:\':: <
Configuration Management Unknown 3::\,_:
Conventional SW Interface Yes -2 ':‘:.i
Tools Used: Requirements Analysis Yes ;':::' >
Tools Used: Development Yes: Strobe, Impulse, InterLISP :Ex'i-
Formal Test Procedures Yes At
Testing Criteria User acceptance; integration testing with the system ':,_?.__.-.
Test Data Graphical interface with scrolling log data ’::-::::
Self Modifying Code Unknown Ei:_::-:_'{,'
'l.‘.| 'l-
2
RIS
i-‘.;-:a-‘-.
4-25 R
T A N R e 4 A A A T N A AT N SR N A SR AT AT AT S '.ir:::":
e e e

P A DT R X XS AR

2

7,

we g

4.1 Case Study Data

Table 1.1 24 : Software Architecture and Engineering, Inc. - Decision Support System

FEATURE

APPLICATION

Problem Category
Domain
Current System Phase
Type of Funding

Iixperienced Al Stafl

Decision support
Collaborative decision information support
Developinent

Contractual

{
Size of Development Team 2
t-;; Level of User Involvement Very active
‘f\.."‘- Dotnain Expert Role

Formal Developruent Procedures
Type of Knowledge Representation
Inference Mechanism

Requirements Analysis

Development Time: Initial Prototype

Development Time: End Product

Requirements definition. Analysis
Yes, internal
Rule-based

Production system

Yes

Approval Mechanisms Mostly informal except requircients. CM approval for changes
Iterative Development Process Yes
Design Changes Yes
Prototypes Built Yes

12 months

Not applicable

Documentation Yes, requirements document, design document, increment plan
Configuration Management Yes
. ® .
Conventional SW Interface Yes DA
. . . . S
Tools Used: Requirements Analysis Text processing programs Ry
'.\-u.':d
Tools Used: Development. DSDS (Decision Support Development System) e
Tools Used: Testing None e
) e
Forinal Test Procedures Alpha and beta testing A
lesting Criteria Experts made final decision on system performance S
Sl
" LA
I'est. Data Usage r.s
o
sell Modifying Code No I\
Lo o
[N
e
Sy
.- ~.‘
128 B
) '{.\"
.)

pJ N e

> 4V _"..’.\" *Fody 7 »_'-_’
TN NN
“’J"Jﬁlt-‘:\f PO POPLLS

P R R R o Ba® ta byt) P2l h g ¥t . Y TV TSI E R
"\-“'J'.'_
RS
NN
] l-"ln t
]
RALAIAY,
-:\&
.) BN, A
4.1 Case Study Data .';-.:'t‘
\‘.l""i '.n
o
LGt
:!.l &
. K J
. . . ‘e L Y
Table 4.1-25 : Software Architecture and Engineering, Inc. - Sensitive Financial Analysis System -,,.'\,{:_:\
KON
. .\'.\.F\
.:_\ YA A
— .n'::-.::i'
FEATURE APPLICATION :'Ph':‘“")
- - Sata
Problem Category Classification
Domain Financial analysis
Current System Phase Completed - production system
Type of Funding Contractual
Experienced Al Staff 1 B
Size of Development Team 2 NN
. W)
Level of User Involvement Active N P:NE
. o S
Domain Expert Role Involved in list process, defined schiedule Ay
~ N »
Forinal Development I’rocedures Yes, internal * =
Type of Knowledge Representation Rule-bhased ‘-.-;':—:':»:
e
Inference Mechanism Production system :':-\.':Qq
oG
Requirements Analysis Yes, internal review -:.\:;.N:;
. RN
Approval Mechanisms No T e
. . T
Iterative Development Process Yes, incremental systemn development ‘;"',;.-;:p
RS
Design Changes No ,_'r':‘f'.?:
. RN
Prototypes Built Yes «;;,'_:-.;: '
. - FNEN]
Development Time: Initial Prototype 3 months - "'.
Development Time: End Product 8 months :?,;3,‘::'
Y
. . 'I l.
Documentation Not required by customer. laterual notes. '.':C,;v' "
s »
. . ALY,
Configuration Manageinent Informal ‘:;é:; \
Conventional SW Interface Interface with conventional software via Apollo OS commands s :
. . AR s

Tools Used: Requiretients Analysis None AN

EIFCRS

"y AT . A u N

vols Used: Development KES, text editor and KES parser ‘;._:.,:;.

. At et

Tools Used: Mesting None .r:':r";:

. . PRI)

Formal Test Procedurcs Case studies with known outcomes °

Testing Criteria Performance judged by experts .:: ‘;-_.:-:
. . . . \ l\ x.. b

Test Data Test case studies, individual rules '.",-.:;:.‘_

-- .‘ \‘

. . AL e

Self Modifying Code No St

I

)
CACAT AL,
e

N

AT
127 RN
oYy

()

o \h -

-
A "
e e A S T R e Y o Gt S e S A Sl S W A Syl S Nt S LY ‘
5-- .\ ‘.&N,S».?:,V S\v.‘f'-.z-. -"-}:\"'\-':,,\::\':-.:\.;-.‘ < -,'-'-.":-.j AT v:\:,’t}\. \:_‘-;\'(.\C:\','. -.":-\::_\‘::\‘! -~ .‘:_,-.‘;'. i __-.‘;,\'\::\. *\:.'.‘}-3:‘_\ '.t#
:..“.. T R N S S Y e Ty 'Sw*“‘-ir N °.'~._;._\,\.-.$-.*\ e O AN AN '

4.1 Case Study Data

Table 4.1-26 : Texas Instruments Inc. - Production Scheduler Project

FEATURE

APPLICATION

Problem Category

Domain
Current System Phase
Type of Funding
Experienced Al Staff
Size of Development Team
L.evel of User Involvement
Domain Expert Role
Formal Development Procedures
Type of Knowledge Representation
Inference Mechanism
Requiremnents Analysis
Approval Mechanisms
Iterative Development Process
Design Changes
Prototypes Built
Development Time: Initial Prototype
Development Time: End Product
Documentation
Configuration Management
Conventional SW Interface
Tools Used: Requirements Analysis
Tools Used: Development,
Tools Used: Testing
Formal Test Procedures
Testing Criteria
Test Data
Self Modifying Code

Scheduling mechanism
Textile liber production and inventory
Project terminated prior to viable prototype
Conunercial
Yes
3
Minimal
Knowledge and constraint definition.
No
Frame-based
Algorithmic mechanism controlled schedule processing
No
None
Not applicable
Yes
No
Not applicable
Not applical;e
Informal memos
Stamp of saved Lisp source code files
No
None
Lisp, windowing forims management tool
None

Planned but not applicable

Interface, schedule checked for accuracy. Both tested together

Schedule, user interface

No

Pal SR b o1
A
i
o 5 B
ey

s " e tm

ALY AP
-"'."‘-"‘:‘
’ f‘ I

4
¢

‘g

s
«

5

Ty
'n"n"l' ALl
. f“' "

sta v 0a” ata” - . . . e At
e T e o M M W L W w e W et w e e A X

4.2 Evaluation of the Case Study Data ::::_\ \

4.2 Evaluation of the Case Study Data

This subsection presents an analysis of the case study data depicting gencrally common aspects,
relational trends and distinguishing features.

4.2.1 Common Aspects

The twenty-six case study tables were evaluated as a single group in an attempt to identify com-
monalities germane to the development process regardless of features such as current project phase,
problem category or domain. In general, the projects appear to share a number of common char- N NN
acteristics as delineated below:

Successful systems;

e Al experience;

: . . SRS

o Small development teams; e Ny
IO
.« . . .\f'-:l
e Participative users; Sl
NTAON
Knowled tation schemes; Ao
¢ Knowledge representation schemes;)
9.
o lterative development process; NN
N
« -) o
e Rapid prototyping; \:\-:;._;
R N
Use of devel t tools; and AN
e Use of development tools; an AN
e Static code. ‘:F.'? _:-
SRS
g
All participants claimed that their systems were successful as measured by some criteria such as ::.:-::: '
user satisfaction, expert evaluation, productivity gains and/or demonstrating the feasibility of a e

new technology. In addition, the project teams were generally comprised of 5 or less people and L

included at least one engineer with Al experience. The users generally played an active role in :j::i:f,
system development and their acceptance was extremely important in determining whether or not ::-::-:::-f
the system was a success. .::.::_.’; '

ENRR)
The development process for all projects was iterative, including design changes and prototyping. RS
For many of the projects, the initial prototype was completed in 6 months or less. The knowledge Q’I}%
representation scheme for all of the projects was based on rules, frames or a combination of both. P

Most of the twenty projects used tools during the development phase. Some tools were built by the b,. ~
participants but many of the tools used were inherent to the Al workstation. Tools were generally -.::',.&:
not used in support of requirements analysis or testing.

Lastly, evaluation of the case studies indicates that few systems include self-modifying code f\'.-:'.-

4-29) S5

'y‘» ’}J'{‘J‘ '\-"A’ "-‘f *"-‘:'&‘;\ f‘.)\‘..ﬁ:: '.$..-'\'i"'\- "‘.F\f:'f
l' " ‘V’\J"’\- \""' »,.*--\,*. ey R S
) l."-. AT ".c. " '\."o.ll. v e, W w

4.2.2 Relational Trends

4.2.2 Relational Trends

The case study data was also analyzed in separate groupings as a function of certain relationnl
characteristics. Those groupings that appeared to indicate significant trends are:

e team size versus tools;

e IR & D versus commercially funded projects; and

e user involvement as a (unction of project phase.

These relationships and apparent features are discussed in the following subsections.

4.2.2.1 Team Size Versus Tools

The literature review indicated that both tool power and development team size were areas of
difference between Al and conventional software development. Analysis of responses to the ques-
tionnaire and further review of reports from Al development teams indicates there is a relationship
5 between the two characteristics. As noted earlier, the trend has been to provide tools of increased

~ power to accomplish specific functions after knowledge was acquired about the task. Tools have

D .

K- also been developed to shorten system development time, to allow small teams of people to solve s
A <till larger problems, and to automate the development process ensuring some higher degree of G:-j_.

confidence in the consistency, quality, or reliability of the programs. o

o

. o . . oy,
o “ome very specialized tools were developed or purchased to perform specific system functions ."-.;
' such as data base interfaces, or micro-code compilers. Most tools were developed to support the :Z'.:'
development team efforts and were aimed at a better program implementation. There were some . -'.:,-.
tools used to assist in the testing effort. There were still fewer tools used in the fielded or mature ol
r’ o

production phases of the KBS systems.

"
In general, the tools supported the development team processes. Tool usage was not as prevalent ;::.-\.
in the other stages of a project. Fewer tools were purchased than were developed. More tools 't-::
- were developed for IR & D projects than for contract projects. Tools developed in the academic r:\".(
: community were adapted for use in IR & D projects. ﬁ‘,{:
:)
o 4.2.2.2 IR & D Versus Contract Funding '.:::::'
3 NS
n Of the twenty-six case studies, twelve were funded via internal research & development money, :-.'_;-.
. nine were commercially contracted and five contracted by the DOD. This cross-section of the data A
: revealed some interesting trends within the three groups. -;',;
<,
'_‘_ Among the IR & D projects, several characteristics were observed. Namely, these projects more .__-:'_', .
- olten followed structured development procedures and produced more written documentation than -:'_:
A ~

the commercially funded projects. In addition, initial prototypes were generally completed earlier
(within 6 months) when compared to the commercial systems. These traits seem to be commensu-
rate with obtaining and prolonging management support. The onus is on the project staff to earn
managerial support by showing enough progress to satisfy them at specified time intervals.

l’ 1]
ot

DS GMAGGN o~ \ e
*§L¢~ PRGN :.;ﬁ; :&“d‘i SRS AR LTNG

g et e g G e B N T o R P T R e
e ; AR S N ..,,,-\.\A\‘s_;-‘.v. ..‘,:l,.v'.h\,- AN,
SN STRTRALAS LSS T et ALY

-I--’I. ﬁ.-‘ d¥ lt

4.2.3 Distinguishing Features

Among the commercial projects, expert involvement seemed to be greater when compared to the
IR & D projects. In addition, most all of the commercial systems were developed to some end state
whereas many of the IR & D projects were terminated prior to completion. It is not surprising
that in the commercial sector, there is a greater commitment towards developing an end product
and not as much competition for the same pool of funds once the contract has been awarded.

The projects contracted by the DOD were similiar to the commercial systems. Along with displaying
the above mentioned characteristics, they also produced the most written documents of the three
groups. They tended to use some form of standard, such as the phased waterfall development
approach or a formal MIL-STD specification to design the system. If not adhered to strictly,
formal standards were at least used as a guideline for system documentation.

4.2.2.3 User Involvement Versus Project Phase

Observations made from the case studies indicate that user and domain expert involvement are
both critical to the success of KBS software development. The user’s evaluation of a system de-
termines whether continual financial commitment can be obtained throughout the development
effort and helps the user develop realistic expectations of ultimate system functionality and per-
formance. Users tend to actively participate throughout the entire systern development effort.
However, according to the study, the user’s involvement appears to increase from the feasibility
to the development phase and continue into production particularly with respect to testing the
system.

The domain expert’s knowledge seems to be mainly required during feasibility and developiment of
the prototype in order to define the requirements, the system’s knowledge, and the problemn-solving
techniques. The expert also helps with the testing effort.

4.2.3 Distinguishing Features

In contrast to common aspects and relational trends, several of the cases reveal features that are
not widely reported among the study participants. One distinct characteristic has to do with the
use of audio/visual equipment during the development process. Specifically, during the knowledge
acquisition phase, both Northrop Avionics Division and Schlumberger-Doll Research tape recorded
interview sessions with the experts. The information reported was then captured for repetitive
referencing and less subject to recollection augmented by the knowledge engineer’s notes alone. In
addition, the inflections used by the expcrts are maintained which may often affect the knowledge
engineer’s interpretation of the data.

In assessing user satisfaction with DSDS, SA & E video taped customer reactions while using the
product. This approach was reported to be more conducive than asking the users questions about
performance while they are simultaneously acquainting themselves with a new system.

Lockheed-Georgia Company’s Pilot’s Associate is being developed by a much larger team than the
other projects in the survey. The distinguishing characteristic is not necessarily the size of the team
though. A more prominent feature is that several expert systems are integrated into the product.
Therefore the number of personnel working with each individual expert systemn would most likely
be similar to the size of the development teams of the other projects.

?‘:“ ;

!.-'(
4
[
Mg

o

‘.
NhAN
/< s e

.' v .
'f'."
P
B

o
g._-_'

T

o,

g
7 '&i

r,;
3%

, -'.:"\I
Lo 4

g N N Y
-!.)"}\.'.'I\! Pl
: .'-{'._'._'. N
l'. l&
L. v"-' Pl

o
LI
X

ﬁ-,ﬁ;;, ;

S Y

“y

1

4
4

oy
L

a
ey
A
[

A,
r

o

A, 0.

. <ol
P T I
A S L -

‘s
Ty

)

LA
A
LA
=%

P S

DA

i
20,
’ -
gy

-

Sa* 2Xa . ALt el)8 24 UnK¥"NAY "X A2 2 Al W W'Y W YN A Sk Sl Aa i S0y NN o AN 0e ta L R Ak NARARA AN AAA -'.‘ -’."
NN
A S
NN
®
SRR
4.3 SDI Related Issues/Implications o

(.' L]
'-:’&{
%

‘ N
The development team for DEC’s XCON system is also much larger than the others. The notably ."' N
large size of the knowledge base (more than 10,000 rules) requires much support. Several knowl- »®
edge engineering teams, each comprised of seven to eight people, perform knowledge acquisition :"‘.a:.p
and representation tasks, continually increasing the size of the knowledge base as new products ﬁ '-:‘\,.

are developed and existing products are modified. Groups to manage administrative duties, user

support, and technical support also exist to provide assistance. 2
In terms of managing a large systems project, Northrop Avionics Division strongly recommends a -

. .. . T . ~ A,
conventional software development cycle wherein iterations are acceptable. This technique would P_\:'_._:_._-f
involve the required engineering disciplines and implies that the engineers across the various disci- :.':-:._-:_::
plines mnust be knowledgeable in Al. Because a military systems outlook is so important, knowledge .-:.-::.-“_
enginecrs who are not experienced with large avionics systems development are inadequate for the :‘-;:" 1
job unless the problem is well-defined and well-bounded. 2 ‘ 3

w0
"' iy,
ey
4.3 SDI Related Issues/Implications 35_5 %)
LA
‘The twenty-six case studies provide an experience base from which SD! related issues and im- . \.
plications can be drawn. The most notable issues are acquisition risk reduction, tools, real-time ::::';:‘_:‘_:
processing requirements, project management and testing. sﬁ\ﬁ~$~.
Hﬁﬂf“l‘*"ﬁ
In terms of reducing the risks associated with acquiring a KBS system, it is prudent to examine those '.:vl‘:::))
aspects that are common to all case studies. Namely, the development process for all twenty-six - "."‘
projects was iterative and based on prototyping. With this method, the requirements specification vV
and the design are expected to change over some period of time with the ultimate goal of providing :-:‘-":::\
a system that satisfies the users needs. In addition, it was noted that all of the case projects :’,\r' ’:
employed a common set of knowledge representation schemes: rules, frames (or frame-like) or a YN

v ¢ %
)
s
ff

combination of both. The knowledge representation techniques for rules and frames seem stable
and would not present risk in the application of this technology.

A S

7,
v

are several commercially available inference engines and LISP embedded language capabilities (Sec-
tion 3.4.5) that have been used successfully. Extensive experience with the tools in a development
environment has led to a reduction in risk associated with their use for software development. Tool)
use in other phases of a KBS project has not been extensive and represents an area where more

?

. . : . . . ’

In the case studies, reasoning strategies have centered on search and inferencing techniques. There -
o

o,

o

'S

(A

oS
7Y,

b
5

{'
a2
7
P

-
A% o

effort needs to be directed. Sl
. " :".x"tv:
Since all the case study participants claimed success in some manner, it may be wise to scrutinize NJ:._:‘_\-'I‘_\
deviations from the abcve techniques during the KBS system acquisition process. PN
Ly g

An important issue involves the nature of real-time processing that is likely to be required in SDI I O':
applications. There is only one system that was represented as having rcal-time requirements :"«s"_ N
commensurate with SDI nceds, and it was never tested to verify that it met those requirements. NI
0 AT
lhe regnirements on KBS software in the SD1 system are likely to be at least an order of magnitude '.-':.-:.,-_:
greater than for a system where the operator interaction is the pacing element for real-time. s.:\'k:‘_:-.
. % -

With two exceptions, development teams have been uniformly small and focused on a single project .
that was scoped to fit their capabilities. It is expected that the BM/C"* Al software will be larger . -rt:%

v

AN

4-32 VAL

I

AT : A ~ o Ly

2 s WP W A R e R R S L S S S PR A S S T S L T L TR S R T R R] A e L T T e e N L L e e W

AR AL NAG NS PO A AN \"b”'\"\"-\,"-.‘('\}-.’x‘f-.".\}s' B O A A AN A S A AL SN Ny
A AU) > f'-lf'.r_' e T 2 N P ,\a\,~,\$,. AL A A AN AR VN ALY SN S,
B A A AN I i A et e W o » » N M W A et ol
o 16 IS A W 108N 0 O S B 0 R T A I T Y G e et R iy » AN V8%, 0001, » X 3% 0%, Wy 0% v 0%y

-

TS

A

.~

-

A

Ol o

PR

:]

e e

N Ta e, € &
. S -
. ettt

.
)

2, «"f;-"i'

«¥e s

PP - aar - . . - = .
L Wt S T W Wy O W W a W Wa Wy T Y, 8 S gL O Sl i

4.3 SDI Related Issues/Implications

and more complex than any of the projects reported on. There are questions about how to partition
the system so that several teams can work on the problem, and ensure that the functional interfaces
will work. Project management is also an issue since there is no experience available in terins of
managing a very large KBS system. Application of tools to support management decisions in the
development of a system also needs further study.

The testing aspect of expert system development is not well-defined because of the nondeterministic
nature of the solution space. Consequently, those case systems that pertain to military applications
are intelligent assistants or decision aids as opposed to autonomous systems. In addition, for all
of the cases, the test data is based on either hypothesized inputs or actual usage. In terms of SDI
applications, the testing aspect has several implications as delineated below.

The nature of a decision aid is that the responses or conclusions reached are not 100% accurate.
Because human intervention is expected in reaching a final decision, some degree of systein inac-
curacy is acceptable. For SDI applications, however, the service period of the system is expected
to be so short that there will be little possibility of human intervention (49, Parnas].

In addition, heuristic programs are often developed by trial and error using the concept of build
a little, test a little. When errors are encountered, the expert is asked to review the siiuation and
add more knowledge. Because heuristic programs may exhibit important gaps in knowledge at
unexpected times, this approach would not be acceptable for many SDI applications.

Furthermore, the best expert system simply imitates an expert exceptionally well. Since humans
are not perfect, expert systems cannot be expected to reach accurate conclusions all of the time.

In terms of test data, it would be impossible to test an SD] system during actual use. Furthermore,
the set of cases that could be hypothesized would not come close to covering the set of all possible
situations. The software systems addressing SDI objectives will be significantly larger and morc
complex than any systems built to date. Consequently, the behavior of these systems under all
conceivable circumstances cannot be known in advance. Another major factor complicating the
prediction of potential stimuli is the use of enemy countermeasures of which there is no current
knowledge. A significant aspect that has not been addressed is how to test a system for robustness
in the face of uncertainty.

As indicated by the commentary in this subsection, continuing research is required in terms of the
application of KBS to the SDI. More details are presented in Section 5.3.

DT)
T,
{ LSRN

r

5,

X

S LI)
'I‘h", .'.
P PR §
R AR
RN

y 7

L)

\ gk g] - -
‘u.'_ -
2y ‘-’ ‘

¢

-J.

Y,

p

o

\ .'v‘.‘l\{
P
e

’
XA

-

"
i

%59

1,

|

3 *
<19

PP A
% SI‘-"- '}
s

2
¥

P
Y

M ." S
0,

.

.
[}

et

0
)

<

- LN

o & 5

»
«

3

b

-
pr

> ” e’
PR R

DAL

l.- l' '

-

re2ed

E:
[
N

"

SECTION 5

Synopsis

5.1 Comparison of KBS Development Process to DOD-2167

The software development model under DOD-STD-2167 is patterned after the waterfall model pe-
viously discussed and includes the concepts of activities, products, reviews and baselines to further
expand the waterfall concept. The model represents software development from the governiment
viewpoint, and as such visualizes the development process as a series of sequential phases with
reviews and documentation integral to each particular phase. It is generally recognized by both
government and industry that software development is not a well-bounded sequential process but
instead consists of overlapping phases.

The 2167 waterfall model was developed to provide government insight into software development
progress and to provide control mechanisms over the evolving product as development occurred.
There was a strong configuration management influence in developing the model which resulted
in emphasis being placed on configuraticn identification through the concept of computer software
configuration items(CSCI’s), and configuration control. Although 2167 provides no guidance on
what constitutes a CSCI, a companion document, MIL-STD-483, does provide guidance concerning
CSCI selection. The 2167 requirements for baseline establishment and control provide the mecha-
nism for controlling requirements, design, and code as it evolves. Associated with the establishment
of baselines are various reviews aimed al assessing software development progress at various phase
points (e.g., requirements analysis, preliminary design) and determining readiness for baseline con-
trol. The documentation produced was designed to be a natural fall-out of the activities within a
particular phase of development.

This ordered, phased approach was expected to improve the DOD posture for developiug and
supporting software. The documented 2167 model was designed to provide: visibility and control
over the evolving software products; a quality product at delivery; and a proper environment flor
maintennnee and modilication of the software in its fielded environment. Although 2167 is 4 new
stamdard, previons developments that have followed the principles of 2167 have generally been
snceeasful developments and have provided software that is maintainable and supportable when
fielded.

As stated previously, the KBS system development process is a highly iterative process and because
of this most. models represent. development as an incretnental process reflecting bwald a httle . fest
a Ittle smplementation. Models developed for expert systems, for example, clearly define the Al
syatem developnient process as a contintous one (35,59, Hayes-Roth Scow n| with feedback to any of
the previous phases of development. Contrast this with the phased development of software under
DOD-STD-2167 and it is obvious that there exists incompatabilities that are of significance.

"These incompatabilities are not significant in terms of activities performed during development but
instead are mainly related to the use of prototyping KBS’s as discussed in Section 3. Whereas the

d‘_‘Q .

s
9S54

2

?.
3
.

1
s,
€

- -..'.'.{l'f' (.,'—
LAAA
A AN SN

Ct
o
rs

v
.

v e
@

r

£
ll\"
W7o

o~

o)

et
ALY
‘.(I

32
LS
"-'4‘ 7

¢
s

Iu

2z

T
.7
)

®
LA

h
ERS

g
*‘

Sy
P

5.2 Literface of Conventional and KBS Software

2167 model and its use in the development of conventional software is essentially oriented towards
defining the total requirements, then producing a design followed by complete implerientation, the
KBS approach to system development advocated by most developers follows a different planned
approach. KBS systems typically define the problem domain, then begin by designing, building
and testing some small subset of this domain. Feedback from this first version of the software can
then be incorporated into the next increment with its added capabilities This process continues
until the complete domain has been implemented or in many cases never ends as further domain
knowledge is collected.

This incremental development approach, when viewed from a documentation, review/andit, and
baseline management perspective, leads to the need for a new look at the management and technical
control mechanisms associated with KBS system development. Questions to be considered are: At
what point in the development process are controls established; What reviews are conducted and
when; and What documentation is produced and when? The incremental nature of the KBS
develoy ment process must be factored into providing answers to Lhese questions. Further, it is
expected that future SDI system components will include both conventional and KBS software.
The presence of both types of software will require that the development approaches, attendant
reviews ‘audits, configuration controls, and documentation be compatable. The model for the KBS
development process is a part of the Volume II report.

5.2 Interface of Conventional and KBS Software

Interface of KI3S with conventional software is focused on two areas of major interest: conventional
programs written in Ada and data bases. The language Ada is chosen to represent conventional
software because of its standardization and projected usage rate in large systems of interest. Data
bases are chosen as another focal point because of the obviously important role they would play in
any battle management system of significant size. The following sections discuss the management,

functional, testing and integration aspects of the interface issnes between KBS and conventional
software.

5.2.1 Management Perspectives

There are critical issues associated with the sequencing development of both KBS and conventional
software. Management pianning, reviews and direction could take different forms depending on
whether the KBS software will be retrofitted, integrated during development or planned for forward
fit with a conventional software system.

Bridging the differences between the different and possibly competitive technologies, methodologies
and capabilities requires communications and contract mechanisms that are appropriate to the
task. lmplicit i the communications and contracts among the cooperating groups is the creation

of some sort of meaningful intermediate products that can be nsed to measure performance, risk,
and intepration

Cost management. will be complicated due to the risk factors associated with both the development
of KBS software and its integration with conventional software. Costing algorithimns that have been

-

PAASE hER)

rard

s
27

v
Ly
Yy
P

v‘}\

2.
TREN,
“h

e

h]

NN

; P ~ R s R O s - g ~——
! Ll el AP A RV JAAGI SR WA A SA Y SRR A S AR MOM SRR R a Ay g g4 g0 SRRSO RIS AR AR~ i a= e Jach Aup LS RS e s A

4

[
x

I N
#
..‘-..

)
"\

/.
L A A by AR 4

5.2.2 Implemnentation Perspectives

L4

T,
"f

.,
)

v

7

applied to conventional software development with some success have not been applicable to the
KBS development efforts. The integration of both software types in a single system may also subtly
change the complexity level so the costing algorithms are no longer valid approximations to even
the conventional efforts cost. N,

NSy

{v
oA

The integration of KBS and conventional software in a system will require the extension or tailoring N?\‘
of familiar management procedures to accomodate the characteristics of differing development -
styles. One of the key items in the extended procedures will be the identification of products that N

can be used to track the expected project cost, schedule, performance, and accomplishment goals .:E:_

versus the actual progress. s

o

P

wAr

5.2.2 Implementation Perspectives AN

5

. . : N

Issues in the actual implementation of KBS and conventional software include specification, design, \;\::
interfaces and integration. There are additional decisions to be made in the systems engineering T

allocation process. With the introduction of KBS, there has to be an assigniment of intelligence and e

knowledge that must be shared by the user of the system and the computer system. System level f,:

controls, feedback and interface will have to undergo more cycles of iteration than is common for A

conventional software until there are adequate engineering guidelines and knowledge to breakout “?\:

these functions in a cookbook manner. e

A

There are top level design issues including synchronization and execution of prograins and handling ;:::._

of the data and information flows. Using present technology, the questions about control flow apply N

predominantly to Ada program interfaces. With the introduction of smart memories or data base 1::::::-

machines into the system architecture, cort-ol flow would become a prominent question for data
base interfaces as well. Specific questions on program controls are phrased as follows. How do
the Ada and KBS processes know when to start, stop, and synch or at least align in a common
reference frame? The questions about data and information flow apply to the Ada and data base
interfaces equally and include: What mechanism is required to handle indeterminant sized amounts
of information or data? What do the data interfaces look like and how can they be defined?

There mve detmded techmeal guestions centering around kinguage capabilities and linntations These
aiestions concern computer language translation and expressivity, integration. task allocation an
clliciency. BExamples of issues include: Ada execntion of translated KBS programs, the aceone i
tion of sell-modifying programs; control passing to possibly non-terminating programs and '

tasking for concurrent solution searches,

Integration of large dissimilar programs historically has been troublesome The
software fault tolerance capability, and the most robust of comunications and o
will be required to prevent more serious difficulties. Stability of interfaces betwes
software is one means of ensuring better communication both within the techni s
between programs. This interface definition might be one of the first interin
under management control.

[}

o o o
“AD~R194 104 ARTIFICIAL INTELLIGENCE SOFTWARE ACQUISITION PROGRAM 2/3 “
VOLUME 41¢ NC_NASHUR NH

U> SANDERS RSSOCIRTES INC
C_BARDAWIL ET AL. DEC 87 RADC-TR-87-245-VOL-1
UNCLASSIFIED F30602-85-C-0234 F/G 12/5

-

HEENENN
1 7]
HEEEEEEN
HEEEEEN
HEEEENN
HEEEEEN
HEEEENN

L

TR

R I T TR I LR I, o X T P W AR S S L W W L WU UMK LR Ll D DR U e LY o
\
45 2
|0 %Mk Lk
= &K g
— ks
3
L | K1)
. ™ Mlz.o
"m .l & l=
= [
= .
25 flis pis
| ———— —— ===

MICROCOPY RESOLUTION TEST CHAR1
IR AL JTANDARDS 1963 2

s a e e a a R g Vo0 g ek Yl el et AV g Y N R S N TN R e T N T T T ROy 2P Sat bav gob Bat ' fa> ‘Sa'ha

,‘- "
. d
o
ot
.
5.2.3 Testing and QA Perspectives S ":’.}
)n
, ,&"‘:
. 1
5.2.3 Testing and QA Perspectives S
3
The integration of KBS functionality with conventional software raises many additional questions. a,':::g;;.‘
These can be grouped into the following broad classes. 1low should nondeterministic processes be 'l...'.,o:::,—
tested? In expert systems, how do experts become certified? With ill defined requirements how 2 h:.
can testing procedures be derived? :::;:::.:"f'
at8 oW » %)
The nature of the application may itself add a dimension of complexity to testing and QA if the o _
proposed operational environment has many unknowns that can affect the nature of the system or).Qp
its responses. Quality Assurance of a system that is self modifying will require new standards and S0 ':1
techniques. v .:
5.2.4 Comparison of Development Techniques W
e
DAY
Contrasts and similarities are noted between the development approach, and the intermediate and '.:::::':.:o‘.:‘.‘
final products from KBS and Ada developed programs that have significance for their system level ":::::::':,:
. . g
integration. bl .::‘5:
Ada developed programs rely on support from the language, standards for development, man- : 2.
agement and review, along with modern software engineering practices. KBS programs rely on o '::l'.-
. ity v
support, tools, and power from the languages used, highly trained/skilled developers with high 4 ,'ﬁ.‘f‘:,:':_
standards of integrity and development paradigms that have no analog in conventional practices. :':Q.u'::t
There are different problems inherent in the milieu of KBS than those in conventional software en- et :.‘ ::
vironments. These include dynamic growth of the data structure, control of the operating system, >
and indeterminancy of results. NG
-I. - *
L

-
'

'..’ \-’ s
P XS
2

Each development group would feel more comfortable using its native language for program de-
velopment unless the application was more naturally expressed in the other language. There have
only been preliminary studies in the area of productivity and release error rate. The most recent
available study used a controlled experimental method to evaluate relative productivity on the four
prograinming tasks of pattern matching, maze solution, frame editing, and a heap sort {32, Hattori|.
The experimental results indicate doubled productivity for LISP over Ada. The error rate reported
in this study was slightly lower for LISP. To minimize language related problems, management
needs to enforce the necessary standard coding conventions and a rigorous walkthrough and review
process to eliminate undocumented tricks or bizarre coding.

p 3

hS

e

There are several similarities which are recognizable to practitioners in the different groups. KBS
techniques clearly build on abstractions. The languages used in KBS efforts are more powerful, so
smaller units of code are required for most classes of functions. When a tcam of people work at a
single terminal, there is an aspect of code walkthrough. Implementation of the chief programmer

team concept is necessary to avoid team members stumbling too far afield. The KBS approach to Py
development is recognizably build a little, test a liltle. AT
| g y hASLYAY
. . . AL S
Use of a contract basis for data representation, protocol, budgeting of computer system resources ":‘j-.;:
and retention of program execution control within the conventional software package are methods TN
. AT PCA
that conld be used by management. to ensure that the programs can be successfully integrated. . \-,}'; 5
RS
Just as the system engineering process now allocates the system functionality to hardware and solt- ok
ware. there will have to be a similar process in the allocation of function and tasking to modules A
SN
&
))
SRR
5-4 “C':l. J
LAY,
— .
3 e O T I, e o T AT T N T Y N A AT T e e T "-'\'-\r-.'s."'."’:."':
Sl e 2 M ST &Qw i, N *\4"‘3' w‘-oh AL \.rsf"r AT A N N N A AN A A LA AT AT AU
Dkl .:.'n::’ U TN AL A LN L ¢ PRI A G e e, Y A A N A N S AN A
<8 ""“l"n.!‘l‘. l'bl'.‘l‘!’l’t“.) Ll‘-‘l'u Y. ‘!,‘*. .'v“'-‘.‘lk‘.' AN, |,- l_l o.i'!‘l) ’l. L t". (U N .“i. W .N z’ ! " ’ W "V\ “\ "."¢ h h‘

LA ARA I U S VR VR U R A NEN AN AR TR AR AN ERR AR AR WO ‘2% 2°%.1"8.2°0.8° A AR R A R AT TR ROV UYY FEYNT

5.2.5 Integration with Data Bases

with or without intelligence as well as some specification of the level of intelligence that is re- :::'::f::"
quired. Recognition of this aspect would interface the KBS and conventional software development '
teams with the system engineering team to produce a working level requirements and specification
document. > :1'.::::

5.2.5 Integration with Data Bases s

Integration of KBS software and data bases is critical because of the large amounts of real world
data that are accessed by BM/C" systeins of the size contemplated for SDI. The two critical issues
to effective integration of the processes are: efficiency in data flow from the data base to the KBS
application; and the effective direction and control of the data base by the KBS application. 1t is
expected that the strategies to effect these implementations would be different depending on the i
data base model, the domain of application and the particular type of KBS software. 0.;4;,-.

5.2.6 Management Implications ek

From a management viewpoint, not enough is known about the KBS development process to have
any rules of thumb for gauging how well development is proceeding. The identilication of meaningful RN,
milestones in the KBS development stream are difficult to assess due to the relative inexperience X

. '
in management control of developments in this technology. This same lack of experience applies > 'l
to issues across the board such as the contract agreement process, standardization, and manpower i
planning. v
i The focus of the statement of work in this area is in the identification of a standard for KBS :_ﬁ\
\ software interfacing with conventional software, and in the management hnplications of intragroup]
activities. These software interfaces include the management and distribution of data, control and :‘:::::iN
intelligence. ",:ﬂ."—\."'-.
X
. . :’;f_.-f
5.3 Application of AI to SDI Issues AR
-.:\:'\ ‘
. WA
The application of Al technology to SDI BM/C" appears to be concentrated into two areas: :iz: y
applications and support tools. SDI studies conducted to date have primarily concentrated on the * f":"
support tools aspect with very little definition in the applications area. A
, . . wr
The application of Al to support tools principally affects the areas of planning systems and knowl- x7-.%<]
edge based software assistance (KBSA). The KBSA concept of providing an automated assistant :::-:-::.:
to support software developers is envisioned as a tool that will contribute significantly to software ft::::'.:
. s . ’l -
productivity improvements. i .
lu the applications area, the potential for applying Al is only limited by the risk envisioned in ::“F‘
developing a particular application. SDI studies to date have lelt the specilic application of Al ::.',.r
as o fo be defined item. Nowever, extensive research and development work is underway in the :,:-':-:-:
areas of decision support aids, expert maintenance systems, knowledge based signal processing and :: :'._::
robotics. All of these research efforts have the potential of providing significant contributions to '.'
SDI BAL/CE VRN
o
PG
5-5 ..'Ul N
. A
; A R R T L T N L T T POV
B S A S S S S S S
R RO R AR At AT S Ll D Do L o, NOIANAOh Y SR, ALY Al
DN N O A Y DR AT D A o e % A N T B A T T, T, 'q‘l',.!'v. AL i End s o Ay T,y .

Bibliography R

AROSON

[1] Addison, E.R. “Design Issues for a Knowledge-Bascd Controller for a ‘Ivack- While-Scan Radar by ."!.‘:‘é‘:'
System”. April 1986. RN
‘:.o'. X3

(2] Apte, C. and Weiss, S. “A Knowledge Representation Framework for Erpert Control of In- ::::‘ﬂ's::(
A%, 738"

teractive Software Systems”. Technical Report, Rutgers University Department of Computer
Science, 1984,)».)- Rty

e N

o,
(3] Bachant, Judith and McDermott, John. “R1 Revisited: Four Yeuars in the Trenches”. The Al f’:ﬁ’: lﬁ
Magazine, Vol. 5, No. 3, pp. 21-32, Fall 1984. :,,'-Lj-f.

s
(4] Balaban, David J. and Nelson, David O. “Flat is Not Necessarily Good”. April 17, 1985. M
Lawrence Livermore National Laboratory. 2
i

[5] Barstow, David R. “Artificial Intelligence at Schlumberger”. The AI Magazine, Vol. 6, No. 4, tﬁ r
pp. 80-83, Winter 1985. Dy A ‘:

[6] Boehm, B.W. “Software Engineering”. IEEE Transactions on Computers, Vol. C-25, No. 12, i !‘:.-‘
pp. 1226-1241, December 1976. g

LY

[7) Bonasso, R.P. Jr. “Analyst, MTP-83W00002, Contract F19628-84-C-0001". February 1981. Faqae
Internal report, MITRE Corp. QUL d
N)
(8] Booch, Grady. “Software Engineering with Ada™. The Benjamin/Cummings Publishing Com- ¢~
pany, Inc., Menlo Park, California, 1983. ,_\,_‘.f
4"‘~':. -\!-

[9] Boose, J. H. “A Knowledge Acquisition Program for Expert Systems Based on Personal {:ﬁ-}‘_\.
Construct Psychology”. International Journal of Man Machine, Vol. 23, No. 5, pp. 495 626, :":‘.J"‘:"*:
November 1985. - \"ﬁ:&; :
(10] Brachman, Ronald J. and Levesque, Hector J. “Frame Representations and the Declara- “t
tive/Procedural Controversy”. 1985. :-:'.:-‘_\-c
AT

(11] Bradley, S. and Buys, R. and ElSawy, A. and Sipes, A. “Developing a Microcomputer based \:E";:g
Intelligent Project Planning System”. In Proceedings of Ezpert Systems in Government Sym- ;"\"‘:‘,‘; }
postum, October 1985. ""-\"".'

(12| Buchanan, Bruce G. and Shortliffe, Edward H. “Rule-Based Erpert Systems: The Mycin ::":::_:
Ezperiments of the Stanford Heuristic Programming Project.”. Addison-Wesley Publishing :.:::;\::-.
Company, Inc., Reading, Massachusetts, 1985. NNV N
T

e

{13] Chandrasekaran, B. “Generic tasks in Knowledge based reasoning: Expert Systems at the right L

level of abstraction”. In Proccedings of Ezpert Systems in Government Symposium, October ¢ o p Sy

e

1985, BiGes:

iavad
[14] Cohen, Paul R. and Grinberg, Milton R. “A Theory of Heuristic Reasoning about Uncer- :-:-::.-‘::
tainty”. The AI Magazine, Vol. 4, No. 2, pp. 17-24, Summer 1983. ::.:::::'-:)

[15] Davis, Randall. “Ezrpert Systems: Where Are We? and Where Do We Go From Here?™ ®
Technical Report, MIT Artificial Intelligence Laboratory, 1982. ’:: i'.‘.

\

ke
BIB-1 R

- |' ot

]

N S AN N NI L N Tl N I W e NS S S S P e T T i SR T T TP e T A a :_:\
:J_;:,Wf-.-; :._;-35;:;:_, A e ey -:’-:;:p.-}'

PRI IR AR R AV UY R VR R RN VN T AR A A NUTUY L N N P R ANAN LT AN RS N DR R R T N e 8,Ca%, 0%s &

: WA
o
1t
\ Bibliography R
08
. » O
AN
R ? ‘" d
1 e
' (16] Drastal, G. and DuBois, T. and McAndrews, L. and Straguzzi, N. and Raatz, S. “Economy !
in Expert System Development: Aegis Combat System Maintenance Advisor™. April 1986, T e
LGNt
(17] Druffel, L.E. and Kernan, Joseph E. and Paige, K.K. and Riski, William A. “Report on the -?‘-
Daol) Task Force on Software Problems”. 1982. Third Draft, July 15. .:- i
? s
. (18] Engleman, C. and Berg, Charles and Bischoff, Miriam. “KNOBS: An I xperunental Knowl- ety
edge Based Tactical Air Mission Planning System and a Rule Based Aircraft ldentification ey
Simulation Facility,”. In In Proceedings of the International Joint Conference on Artificial "‘h‘
Intelligence , 1979. o '::l::‘
{ 0}
| ! \L
y [19] Fikes, R. and Kehler, T. “The Role of Frame-Based Representation in Reasoning”. ACM, Vol. .",:'.:',::
- 28, No. 9, pp. 904-920, September 1985. - 3
' . . . Sty
. [20] Freiling, Mike and Alexander, Jim and Messick, Steve and Rehfuss, Steve and Shulman, Sherri. :‘,::'::::'.:
: “Starting a Knowledge Engineering Project: A Step-by-Step Approach”. The Al Magazine, ::.:::«:3?
' Vol. 6, No. 3, pp. 150-164, Fall 1985. i
s
[21] Gallant, John. “ADL Putting Al Technology to Work”. Computerworld, Vol. 19, No. 13, pp.
45-50, April 1985. St
¢ 0) .|A
R N
3 [22] Gates, K.H. and Adelman, L. and Lemmer, J.F. “Management of Al System Software Develop- 532::‘!:‘
ment for Military Decision Aids”. In Proceedings of Ezpert Systems in Government Symposium, $::|‘! b
oty
A October 1985. X
Y {23| Genesereth, M. and Ginsberg, M. “Logic Programming”. ACM, Vol. 28, No. 9, pp. 933-941, :‘,'U Q
September 1985. ::w.m
-""-.’\
[24] Gilmore, J. F. and Pulaski, K. “Comparative Analysis of Expert System Tools”. In Applica- 3‘&?& .
tions of Artificial Intelligence II, April 1986. N G
{25] Goldberg, R.N. and Weiss, S. M. “An Ezperimental Transformation of a Large Ezpert Knowl- ;:::‘;:r
R edge”. Technical Report, Rutgers University, Department of Computer Science, 1980. :t"::::
A
(26] Goyal, Shri and Prerau, David and Lemmon, Alan and Gunderson, Alan and Reinke, Robert. EE::’,;:
“COMPASS: An Expert System for Telephone Switching Maintenance”. In Ezpert Systems in ..
Government Symposium, October 24-25 1985. ASES
ARG
. .) S . . . ” . >,
{27] Green, P.E. “Resource Limitation Issues in Real-Time Intelligent Systems”. April 1986. ".:t-:';
; A
{28] Hankins, G. B. and Jordan, J.W. and Katz, J.L. and Mulvihill, A.M. and Dumoulin, J. N. and :'::-f:-
Ragusa, J. “Expert Mission Planning and Replanning Scheduling System”. In Proceedings of
Erpert Systems in Government Symposium, October 1985. :ﬁv-
ALy
, . , e
. 120} Harmon, Paul and King, David. “Erpert Systems, Artifical Intelligence in Business™. John ;.::%‘f_\
! Wiley & Sons, New York, NY, 1985. PO
RO
30| Hart, Anna. “Knowledge Elicitation: lssues and Methods”. C'omputer Aided Design, Vol. 17, o "
No. 9, pp. 455-462, November 1985. -"If
S
S
3 » 3
; BIB-2 }'3-':5_\ |
[
A
D ACACA NSO, WGE SRy R T R T R R A e e o Ryt oy L I P, LR LR NLY,
A A L
‘“.‘l‘t‘l'.“ﬁ:"‘l‘:‘l.\\“:‘l‘- l”‘l‘%‘l':‘""i’:""‘!‘t‘l.o Wy l‘-l‘- » '.u ﬁ\ Yo ot 0, 8 g, Rt 0 . r.i.v LN, ty 0%, l, DD R . "‘l-

My
At N O e

Bibliography

[31] Hart, Peter. “Talks about Expert Systems”. IEEE Erpert, Vol. 1, No. 1, pp. 96 -99, Spring
1986.

[32] Hattori, F. and Kushima, K. and Wasano, T. “A Comparison of LISP, PROLOG and Ada
Programming Productivity in Al Area”. In Eighth International Conference in Software En-
gineering, Aug 28-30 1985.

(33] Haugeland, John. “Artificial Intelligence: The Very Idea”. MIT Press, Cambridge, Mas-
sachusetts, 1985.

(34] Hayes-Roth, F. “Rule-Based Systems”. ACM, Vol. 28, No. 9, pp. 921-932, September 1985.

[35] Hayes-Roth, Frederick, and Waterman, Donald A. and Lenat, Douglas B. “Building Expert
Systems”. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1983.

(36] Kaplan, Jerrold. “The Industrialization of Artificial Intelligence: from By-line to Bottom
Line”. The AI Magazine, Vol. 5, No. 2, pp. 51-57, Summer 1984.

[37] Keller, R. “A Survey of Research in Strategy Acquisition”. Technical Report, Rutgers Univer-
sity, Department of Computer Science, April - July 1982.

[38] Kline, Paul and Dollins, Steven. “Choosing Architecture for Expert Systems™. Technical Re-
port, RADC Technical Report TR-85-192 October, 1985.

[39] Levine, A.P. “ESP: Expert System for Computer Performance Management”. April 1986.
{40} McGraw, Karen L. and Bruce A. “The Phantom Crew Al in the Cockpit”. DSHE Defense

A
Science & Electronics, Vol. 4, No. 11, pp. 44-54, November 1985. I
P o
|"_)- ,'. ,
[41) McLaren, R.W. and Lin, H.Y. “Knowledge-Based Approach to Ship Identification”. April ‘-";:;'\V
1986. nhb
£
(42] Metzger, P.W. “Managing a Programming Project”. Prentice-Hall, Englewood Cliffs, N.J., 3 _‘
g Yy
. . WAL
(43} Milne, R.W. “A Few Problems with Expert Systems”. In Proceedings of Expert Systems his :::
Government Symposium, October 1985.) fh-_f;'\
4] Myers, Ware, “lntroduction to Expert Systems”. [FFE Erpert, Vol 1, No. 1, pp. 100 109, - r; :
Spring 1986, :::'\; j‘\;
.':-_\"‘-‘_&,"
[15] Naedel, Dick. “Ada and Embedded AY”. Defensc Electronics, Vol. 18, No. 4, pp. 90 100, April e
1986. :'.:‘j-_:‘-::?{:.
[46] Naughton, M., James, Dr. “A Major Conference on Expert Systems”. In Erpert Knouwledge .\.‘
Systems, 1985. pp. 165-172. Sy
[47) Orciuch, Edward and Gilbert, Kenneth and Marshall, Charles. “The Application of Modular :::;:'3\ h
Soltware Engineering Techniques to a Very Large Expert System”™. In Proccedings of the C‘::g.. "o
Nincteenth Annual Hawait International Conference, January 1986, °
[48] O'Reilly, C. “Application of AL, II". In Proceedings of SPIE, April 1985. A $':'
A,
:3:5:;;?:;’
B 3 B SLSA A
AA
N e A T T T A N N A T A AT N L AN W AT T AT A ARSI AT ATNEN N
A AR AN R e L
A AT N0 NN AN SO e 28T R G A D NN R N CHIT ROV A DA

Dibliography

149] Parnas, David Lorge. “Software Aspects of Strategic Defense Systems”. Commumeafions of
" the ACM. Vol. 28, No. 12, pp. 1326--1335, December 1985. SDI.

50| Parsaye, K. “The Evolutionary Road to Expert Systems”. ln Procecdings of Erpert Systems
m Government Symposium, October 1985,

'51) Pearson, G. “Mission Planning within the Framework of the Blackboard Model”. lu Proceed-
inqgs of Expert Systems in Government Symposium, October 1985,

152] Polit, Stephen. “R1 and Beyond: Al Technology transfer at DEC". The Al Magazince, Vol. 6,
No. 4, pp. 76-78, Winter 1985.

[53] Prerau, David S. “Selection of an Appropriate Domain for an Expert System”. The Al
Magazine, Vol. 5, No. 2, pp. 26-29, Summer 1985.

[54] Prerau, David S. “Selection of an Appropriate Domain for an Expert System”. AI Magazine,
Vol. 6, No. 2, pp. 26-30, Summer 1985.

[55] Reiner, Julius and Smith, Jeff. “Practical Al Impementation Issues in Real-Time Multisensor
Function”. In Government Microcircuit Applications C'onference (GOMAC'), 1985.

[56] Royer, Thomas. “EIA Workshop Trip Report”. September 1985. Personal Communication.

[57] Sandford, D. “Parts I, II, IIl of KNOWLEDGE BASED LEARNING SYSTEMS DS + CVS
- A Proposal for Research C'VS = An Intro. to the Meta-Theory € Logical Foundations™.
Technical Report, Rutgers University, Department of Computer Science, May 1980.

[58] Schwartz, Tom J. “MCC Says Better User Interfaces Key to Complex Systems”. December
23 1985. Newspaper.

[59] Scown, Susan J. “The Artificial Intelligence Experience: An Introduction, Digital, Inc.”. DEC
Technical Report.

[60] Sheil, Beau. “Artificial Intelligence Tool Box”. In Artificial Intelligence Applications for
Buciness, 1984, Proceedings of the NYU Symposium Editor, Walter Reitman, May 1983.

[61] Sheil, Beau. “Power Tools for Programmers”. Datamation, Vol. 29, No. 2, pp. 131-144,
February 1983.

[62] Smith, Reid G. “On the Development of Commercial Expert Systems”. The Al Magazine,
Vol. 5, No. 3, pp. 61-73, Fall 1984.

[63] Stanley, Anne M. “B-1B Integrated Diagnostics, Proceedings from NSIA Conference in Alexan-
dria”. Unpublished paper.

[64] Stevenson, A. and Fox, M. and Rabin, M. “TESS: Tactical Expert System”. April 1986.

165, Tobat, DL, and Rogers, S, K. and Cross, S.E. “SENTINEL: An Expert System Decision Aid
for a Command, Control and Communication Operator”. April 1986.

[66] Vessey, I “Expertise in Debugging Computer Programs - A Process Analysis™. International
Jouwrnal of Man Machine Studies, Vol. 23, No. 5, pp. -+ .9-494, November 1985.

IR AN

.
ARG, (Y

W 'Y
o
N N
K:"'Ifl N
VN

‘):',‘ 4

K

AR
’ ""0‘ ‘l‘ ‘;

[
*x

s

e
e
o

‘."-
?-

- {sﬂ‘"r ': .

g Bibliography A

: |67] Waterman, Donald A. “A Guide to Ezpert Systems”. Addison-Wesley Publishing Company, "-"-l" /
Inc., Reading, Massachusetts, 1986. i

o
[68] Weiss, Sholom W. and Kulikowski, Casimir A. “A Practical Guide to Desigiing Frpert Sys- v‘,:.:::
tems”, Rowman & Allanheld, Totowa, N.J., 1984.

na

el

! [69] Winston, Patrick Henry. “Artificial Intelligence 2nd Edition”. Addison-Wesley Publishing .il‘,:'bc::‘i
Company, Inc., Reading, Massachusetts, 1981. i

[70] Yager, R. R. “Explanatory Models in Expert Systems”. International Journal of Man AMa- './-"'5-")-
. chine, Vol. 23, No. 5, pp. 539-550, November 1985. Lo
N

-

VI T CNC IR TS e a8t nia avaaba B’ N R - « y
R " Ua bd ' 2% a0 w8 a0 2tk o Suv e Bt B2 lav @at gt S g gb 0) 0, PESD 4 & Ba VA" g% o 402 §¢, -.‘,'

WA
} Ca"™L8
oA
: AN :
) Ky ”
aTaald
Glossary RN,
,’ . -‘
Ada - is a programming language that was designed to meet the needs of programmers and to N ::
embody the concept of design methodologies by encouraging and supporting good design anid n o
programming practices. k’::::::::.:
. . . . Ny
Artificial Intelligence - The science of making machines do tasks that would require intelligence WA
if done by man. An approach that has its emphasis on symbolic processes for representing and N
manipulating knowledge in a problem solving mode. :1: "
Ve
Automatic Programming - The ability to use programs to automatically generate other pro- o AN
AN
grams. e S

-l (3
Backward-Chaining - An inference method that begins with a goal and works backwards to seek .
a chain of premises that accounts for all the facts at hand. o "‘:‘::

L %]

Causality - Inference mechanism based on the understanding of the structure and/or function of \,‘ﬂ,‘.!,::f
a given device. 'ﬁ:::.:',
X
Computer Vision - Perception by a computer, based on visual sensory input, in which a sym- N 2
bolic description is developed of a scene depicted in an image. Used synonymously with image 2 ':0 \
understanding and scene analysis. »:;‘."‘ :
hen
Deduction - A process of reasoning in which the conclusion follows from the premises given. ;l',:':.lf:""
Uy .
C e el . . WA
Demon - A local rule or procedure which is triggered upon changes to specific properties in a o ‘&
b structured knowledge base. LA
Fo o
Domain - The problem area or region of knowledge(e.g. bacterial infections, fault diagnosis or :::}f-:
computer configuration). :-.‘:,\'j
‘-'\“:. -
DWIM - Do What I Mean. Part of the InterLISP environment with user facilities such as correcting LY
mispelled words, variables and code. -
o
LS PR
Empirical Association - Inference based on the association made from previous expericnce or ‘;.,}'.f:.-
) observation. _.;.:::::
h . . \-.‘..- W,
b Event Driven - A forward chaining, problem solving approach based on the current problem :'t-.'::"'
1 status. .
Expert Systems - Al systems that reflect the skill, experience and judgement of humans knowl- :f:
edgeable in a particular field. N
b ._"u -
Y Explanation Facilities - Ability to provide a trace mapping on how a particular problem was ‘::.::-_,_.:_‘
solved. ®
Exploratory Programming - Conscious intertwining of system design and implementation. "5:::;';:
AN
Failure Tolerance - Term used in testing to statistically indicate the allowable failure rate. For -."’_:F;::
example, to meet acceptance criteria for a given system, it must generate accurate results, say, 95 “’.:-':-r::f
percent of the time. ~ -J'. ‘
Fault Diagnosis - Determining the trouble source in system. Ef:.\-:
::..'::-l'?l
‘-:'1:.':.:
W
GLO-1 IR
Suh N,
F;f:f:ljl';'):‘;,\‘?éf_'f,:J’.'I.:# ','d‘,'l,:?:ﬁcl' Tl e)
¥ " » A -.' AL ‘ ””l 't'~’ ----------
F:: ‘ J'.f‘.,\.'x'x‘,-.\ \ ._..ﬁf%,' i

Glossary

Forward Chaining - An inference method that gathers pieces of information in an atlempt to
build forward to an end goal.

Frame-Based Knowledge Representation - A representation method that clusters closely as-
sociated knowledge about a class of objects or events. A frame is 2 data structure thal associates
one or more features with an object in terms of various slots and particular slot values. The slots
may be filled by values or perhaps pointers to other frames.

Goal Driven - A problem solving approach that works backwards from the goal.

s N

PN
. L . N
Heurlstics - General rules of thumb used by an expert io process information in a particular AN,
problem area. I
.':-\j-v:f\’v
Inference Engine - A program’s method of navigating through a knowledge base in an attempt _\'_:.{;.(;

to solve a problem.

Inferential Rule - An associated link between antecedent conditions and resultant beliefs that AN AN,
. . . . o A
permits beliefs to be inferred from valid antecedent conditions. QZI:\,;‘ \
AT R RS
Instantiation - Replacing a variable by an instance that satisfies the system or the statement in zr':::\'\“ -
which the variable appears. e "
Intelligence - The degree to which an individual can successfully respond to new situations and :‘_*:-‘,;E-
problems. It is based on the individual’s knowledge level and the ability to appropriately manipulate :".\ﬁ}i
and reformulate that knowledge as required by the situation or problem. wde
. . N,
Intelligent Assistant - An Al computer program (usually a knowledge-based system) that aids b-::
a person in the performance of a task. e
LT
Knowledge - Knowledge in Al is basically comprised of facts, beliefs and heuristic rules. ,3::;';":()
." .~. ;
Knowledge Acquisition - The process of extracting and formalizing the knowledge of an expert \{"::;'::-s
for use by an expert system. s;.\’:'."d..
Y,
Knowledge Base - Collection of facts, inferences and procedures, corresponding to the types of N
information needed for problem solutions. PARINTG
S
Knowledge Based Systems - Another name for expert system ':'-'_:'-\,'s".
R
Knowledge Engineer - A software engineer specializing in the techniques of knowledge acquisition :":z::'}
and knowledge representation. Lads ‘(:"
Knowledge Representation - Formalized structure of facts and heuristics that encompass the Sﬁ:ﬂ\
descriptions, relationships and procedures. tj@’ N
LSy

Knowledge Source - The body of domain knowledge which pertains to a specific problem. (i.e.,
expert).

LISP - A principal Al programming language. By definition, LISP, is highly recursive, and due
to an untyped and applicative framework, highly supports symbolic computing. There are many
LISP dialects which include:

e Common LISP;

e Interl,ISP;

i i YRR LV X SV SV F VAT R R 0.0) 0

)

AW

g
“ g

1
2
L

~%
%y

Glossary

'N-‘

\'\
.
L™

N
& &
O ‘,:;'
h s

¢
[d
3

e MacLISP; and
e ZetaLISP.

(4

LACH .
®
% !

Metaknowledge - Knowledge about the structure of and how to use knowledge.
Metarule - A rule which prescribes the manner in which rules should be used.

Natural Language Understanding - The response by a computer based on the meaning of a
natural language input.

Object Oriented Programming - A programming approach focused on objects which commu-
nicate by message passing. An object is considered to be a package of information and descriptions
of procedures that can manipulate that information.

Planning Systems - An expert system application that performs planning design actions.

Predicate Calculus - An extension of propositional calculus. In predicate calculus, elementary
units are called objects. Predicates are statements about objects.

Production Rule - A modular knowledge structure representing a single chunk of knowledge,
usually in an If-Then or Antecedent-Consequent form.

PROLOG - An Al or symbolic programming language that is based on predicate calculus.
Prototype - An initial model or system that is used as a basis for building future systems

Rapid Prototyping - An approach used in system development to quickly generate a working
model that simulates a response to a simplified version of the problem at hand. Through incremental
development, the simplified model is made increasing complex in ultimate response to the problern
statement.

Robotics - One Al research branch that is involved with allowing computers to see and manipulate
objects in a specific environment.

Rule-Based Knowledge Representation - A representation method comprised of a set of pro-
duction rules based on a situation and an action...e.g. If Antecedent - then Consequent type of
structure. A rule is a conditional statement consisting of a part comprised of one or more if clauses
which establishes conditions that must apply if a second part, composed of one or more then clauses
18 Lo be acted upon.

Ruleset - A set of rules that constitutes a module of heuristic knowledge.

Satisfice - Achieve a solution that satisfies all imposing constraints.

Semantic - Specifies the meaning or significance of a symbolic expression.

Semantic Net - A knowledge representation scheme composed of nodes describing objects, and
links describing relationships between nodes.

B e e A e o o o

Shell - Software programs used to develop expert systeins.

Slot - A description of an object in a frame. Slots may correspond to features such as name.
definition or creator, or may represent a value.

Syntactic - Specifics the form or structure of symbol expressious.

Tt T T A A T A S K " m Rt e s n
TN l‘.-g"l"‘.r"ﬁ' ‘:\: Xy Vo o SN N e Vg ARG PO A N
) ‘J‘f}f‘f\?"{\‘w -

A AN, .

¢

BT

2 RNV M B
ARRAARALICEOAOLTE SRS
:) AR A R BN R
‘-.\P'. .\\-i-.t , ot e U NS LOLTL LT . Woe

GLO-4

o
<
al
2
w0
S
<
>
£
L
=
=
-
=
4
=
&
- 4
<
%
«
3
c.
=
o
-
&£
[
@
]
@
8o
]
e
©
<
(%%
=
a
.2
.z
o
d
=
£
<
b
&
<
-
[
<
~
o8
o
=
<
&
wn
-
r
=
[
c.
>
[

ue
=4
=
=
=
=
=
«
I
:Te]
[
bt
(=%
(92
P
]
=
3
Y
£
'
S

e 2 > S

Truth Maintenance - The task of preserving consistent beliefs in a reasoning system whose beliels

change over time.

o
<
p
@
-
<
c
b
=8
<
o
¢
—
<
=
&
-
&
=
e
-]
E
[
b4
]
>
n
[
£
E
£
]
[
80
<]
[
(9
1
-]
]
Lol
S
@
Q
2
0
=
R
<
]
=]
&
z
C
=
x
o
B
=
g
=

Glossary

b - MU T Ve T e A B s Ay Ry Y W .Y,

A gu g hegin e 4 ta 4 .\."..'h
R
RESNOYRS
e
RO
oL
, A
-F\.'N
A ..:I:’\'f.h i
cronyms AN
o
ABl/Inform American Business Information f-:-::ﬁ'
AFR Air Force Regulation :::'::::::&:
Al Artificial Intelligence :"\::-j\" ¥
ART Automated Reasoning Tool Nt
ATO Air Tactical Operations
ATP Acceptance Test Plan
ATR Automatic Target Recognition
BM/C* Battle Management/Command Control and Communications
CBD Commerce Business Daily
CBTAO Cost Benefit of Tactical Air Operations
Cl Configuration Item 2
CM Configuration Management A
CMS Configuration Management System :::‘: o A
CMU Carnegie-Mellon University ::;_\':f-::,'-.
COMPASS Central Office Maintenance Printout Analysis and Suggest System NENENERT.
CPC1 Computer Program Configuration Item '
CPL Constraint Propagation Language
CPU Central Processing Unit >
CSCl Computer Software Configuration Item -
DARPA Defense Advanced Research Projects Agency SN
DART Duplex Army Radio/Radar Targeting '
DATA Decision Aids for Target Aggregation
DBMS Data Base Management System
DEC Digital Equipment Corporation
DID Data Item Description
DLL Data Layout Language
DOD Department of Defense
DP Data Processing
DPMA Data Processing Management Association
DROLS Defense RDT&E On-Line System
DSNS Decision Support. Development System
e Delense Techmeal lnformation Center
[Flectronie Countermeasures
150 mbedded Computer Systems
1A Electronic Industries Association
Esp Expert Software Pricer
FSTAS Expert System for Target Attack Sequencing
BTl Experi. Technologies, Inc.
DRSS Fault Diagnosis and Resolution System
FRI Frame Representation Language
HOL, High Order Language
1BM International Business Machines Corporation
IBM FSG International Business Machines Federal Systems Group
ACR-1
A D R N R T R N S SC TN SN SN
‘r‘.:-*\’f_l:-";"';:il_f_::j:;’é., ‘)":;‘ L N o S

. o~y
URTTCM R W3 PO RO SO ON RO IO K P R T R R T T R T R R R R S T W R W WU LWL WL W § * aat Yy

- - - - - - L8} d '
" RSt
‘h' " 'N
i T
[]
by ?-Ei\
o Acronvims]
v oo
h NS
2 o,
) . . N
A INSPEC Information Services in Physics, Electrotechnology Computers and Control)
IR&D Internal Research and Developinent v? ‘
,:: IRAD Internal Research and Development Ny
0 ITACC Integrated Tactical Air Control Center .;: \
"".‘ V&YV Independent Verification and Validation '\;""::
’;.. JLC Joint Logistics Commanders MY
; KAR Knowledge Acquisition Rules s
o KBS Knowledge Based System ._" R
- KBSA Knowledge Based Software Acquisition v
\ . KEE Knowledge Engineering Environment ‘;"
Y, KES Knowledge Engineering System i ":.g',‘
A LAS Lockheed Aircraft Service Company]
. LES Lockheed Expert System W
:«,‘: LGC Lockheed-Georgia Company - v o,
"$ MIT Massachusetts Institute of Technology ::\J;‘ :
N NASA National Aeronautics and Space Administration Vi
. NSF National Science Foundation : ‘
A NTIS National Technical Information Service Tn
g (O] Operating System ;.:-i..,l
L PDR Preliminary Design Review ;:: ﬁ_
(PDS Problem Definition Statement {,(.:
e PGSC PAR Government Systems Corporation §.-.'{ !
QA Quality Assurance 4 ‘Q,
o RADC Rome Air Development Center :::‘;'.
N R&D Research & Development i
SA&E Software Architecture & Engineering, Inc. \-.::f.
> st Strategic Defense Initiative NS
N SFAS Sensitive Financial Analysis System ;_
o SPEA See and Project Enemy Activity - .,,\.
»: SQR System Quality Review :—:.;f'
RN SSE Software Systems Engineering Directorate ;.: ;
: STAMP System Testablility and Maintenance Program _\:-N
N TI Texas Instruments, Inc. "‘:’
4 TMS Truth Maintenance System FFS
K UICP Unidentified Command Post :-,'f.-
‘r_-... f
\ e TN
" X
\’:‘-‘}
—~
>
A G
v RSN
) N
Ay NN
? '\5_'-.:
. WA
' []
A))
QAN
!
:: t :"\

Ay

P o i
>

(@]

e

[]
ot
5
Y

RSN,

L AN

‘p » "- [J agwm, P PP T S I Ve T I T TP 0 I P T R S T O I 0 A I T e] '.___\._\.‘_\\\\'\.

[" o, 'b'iVJ‘-F."."J‘-’J‘J‘.I./'J._{'-P,-’J‘-‘,J‘--‘J‘IJ‘_I(._.I’ e e A o

) v \k\. L A S L) L R GG B St VAR UL AR W AL S A R AN LR O S I A e W A i

,‘1‘. Y UM s, g} > J‘::'fuf..-'.-’:.\'-l‘\. NN A AN lr’.r -:“'f N .r-\-r__-: et RORS o TN N

i i TN : a2t N _ :
3, "“0’. » 5

4 ('

paacad,
LT a
L3 ‘. A A .‘
- ““‘
" "0 e,
B

R
Appendix A AR

e

N

Software Development Problems e
h GO

P
b ':'4':'.#.. ':
This appendix isolates software related problems that surface in both conventional software devel- NN
. PPN . . o e
opment and in artificial intelligence systems development. The following software categorization t:.r:.-::
was extracted from a report issued by the Department of Defense (DOD) Joint Services Task Force gt

on Software Problems, Report of the DOD Task Force on Software Problems. One purpose of that iyt
study was to identify conventional software problems associated with embedded computer software. '

1. Life Cycle: -:;,w"{“{ L N

(a) Requirements;
(b) Management,; N =

RTINS,
(c) Acquisition; ;:-l;:;""
- el
(d) Product Assurance; and f.:" o5y
. "
(e) Transition. ;,-{'* e A
2. Environment: ez 9.
A
(a) Disciplined Methods; 5'5;-.-'-‘.-*
(b) Labor Intensive; i ».r:
2 .
(c) Tools; 2 ‘ i
(d) Reinvention; and 5:_,.
e

(e) Capital Investment.

>
Pt

3. Software Product:
(a) Doesn’t Meet the Need; -
(b) Software Metrics; PN
(c) Design Attributes; MAYLGE

(d) Documentation; and >

(e) Immutable Software.

W
SN
ol
G

"

4. People:

{ka
SN
ey

]
v
LS

(a) Skills;
(b) Availability; and

(c) Incentive. NN

.\‘\-'\'1:.‘
,5\55

A-1 Yo NS

| o
A

LR W N N Y Y N N N A N NN LA L N L A Y e A LA AT T A % LA T A e A R A e N A e R A O
A o e e it A A I e R AR WA A AL N N A T s e Y
AN rﬂ"’-ﬁ"-"“ % "S" T ';""3"}“)-“*":: ~*::b}~-‘¥$ﬁ’\ u’xf\"'\}.\' Y A '}:*-\..r oy

KA , MARY N e
W Vel S hy Y ATt T L AT S e T N0
'::“."!:'f‘.'fnfl‘::"n. Y LA AN of"hl':?":?b -.l':ﬁ'u,l'-. ':.‘!’o. G SN e i e, b Y > Blh L 0 o Ll Se RO

j - " AL AR - N .-.|‘
v 1t 3 et Bt dat bt dat fa’ st Bt 0t St b G- “Ru¥), AR b bl SRk Aoy » Jn_h__;_--.-.n--.x.,

Appendix A Software Development Problems

A short definition of each category and subcategory is provided followed by tables of conventional
and Al systems problems that were identified in the following bibliographic sources:

1. Sources

(a) Acquisition and Support of Embedded Computer System Software, September, 1981.
(b) DOD Weapon Systems Software Management Study, June, 1975.

(c) DOD Weapon Systems Software Acquisition and Management Study, Volumes | and I,
May - June, 1975.

(1) Final Report of the Joint Logistics Commanders’ Workshop on Post Deployment Software
Support (PDSS) for Mission Critical Computer Software, Volume 11, June, 1975.

{e) Proceedings of the Joint Logistics Commanders Joint Policy Coordinating Group on
Computer Resource Management, November 1, 1981.

(1) Report of the DOD Task Force on Software Problems, Third Draft, July 15, 1982.
(g) Report of the USAF Scientific Advisory Board, December, 1983.

(h) Suggestions for DOD Management of Embedded Computer Software in an Environment
of Rapidly Moving Technology, March, 1982.

(i) A Practical Guide to Designing Ezpert Systems, Shalom M. Weiss and Casimir A. Ku-
likowski.

(i) Artificial Intelligence, Patrick Henry Winston.

(k) Building Expert Systems, Frederick Hayes-Roth, Donald A. Waterman, and Douglas B.
Lenat.

(1) “Computers and Information Technology in the Year 2000 - A Projection”, Stephen F.
Lundstrom and Ronald Lilarsen, IEEE, September 1985,

(m) Erpert Systems, Paul Harmon and David King.

(n) “Expert Systems: Where Are We And Where Do We Go From Here?”, Randall Davis,
MIT Al Laboratory, June 1982,

(o) IEEFE 1984 Workshop on Principles of Knowledge Based Systems, IEEE Computer Soci-

ety.
(p) “On the Development of Commercial Expert Systems”, Reid G. Smith, The Al Magazine,
Fall 1984.
(q) Rulc-Based Expert Systems, Bruce G. Buchanan and Edward H. Shortliffe.)
(r) “Starting a Knowledge Engineering Project: A Step by Step Approach”, Mike Freiling, Laki ’:"
Jim Alexander, Steve Messick, Steve Rehfuss, and Sherri Shulman. AT
(=) The Al Business: The Commercial Uses of Artificial Intelligence, Patrick H. Winston ::-j:-::i::‘.
and Karen A. Prendergast. ;‘."\-’:‘
. '-..\.)
() The Arteficial Intelligenee Experience, Susan J. Scown. ",:.:::.:.?“:.
(v) The Handbook of Artificial Intelligence, Volumes I-11, Avron Barr and Edward A. Feigen- - ®
baum. \':;'_,.‘ ot
AT
Ity
"\ o Q
A-2 i
-~ [)
NI

i

‘s.'*'w.
) \‘k. '0 [y

P Pl Ca N X -"-l'"\,-.-‘\,f\\
‘\-‘“*x.’.lx.@ TN AER NI NS a.s."\""f
ALRERERE
AN

"".\

"n\-\"\\

AT \‘- "."V"‘J' *n" V‘ NS J\}\ PO AT N ‘. .\‘.:*
\i : ~.':‘5" R RN §‘e

..Oc‘c D0 AR WA TR N Y

A.1 Life Cycle

A.1 Life Cycle

Life cycle refers to the relationship among activities of computer software development from its
inception to retirement. The section is divided into five major categories: Requirements, Manage-
ment, Acquisition, Product Assurance and Transition.

A.1.1 Requirements

The requirements phase of the software life cycle consists of the analysis and definition of a system
as defined by the user. As such, communication between users, support agents and acquisition
agents is essential to the success of the final systemn. Oftentimes, the requirement document does
not accurately define the product; or perhaps uses ambiguous wording. Inadequate requirement
information results in costly schedule changes to hardware and software. For itemized problems
see tables A.1.6-1 and A.1.6-2.

A.1.2 Management

The management of software life cycle includes activities such as planning, monitoring of schedules
and budgets, assigning responsibilities, tracking software projects and effective plans for software
activities. For itemized problems see tables A.1.6-3 to A.1.6-5.

A.1.3 Acquisition

Software acquisition is difficult to specify because the rules for acquiring software have hist rically
been based on the rules for obtaining hardware. Some major aspects of acquisition are:

e Management of System Interfaces - Good interfaces must be defined to guarantee a smooth
integration;

o Project Status Reports - Documentation for project status;
e Documentation Requirements - Documentation where applicable:

e Software Change Control - Software must be carefully managed especially where changes
ocqur;

e Reliance on Contractors - Several contractors are frequently responsible for managing the
software process; and

e Design for the Complete Life Cycle - All resources needed: hardware, software, documen- ation,
tools, personnel, ete. for the life cycle should be clearly identilied.

For itemized problems see tables A.1.6 6 and A.1.6-7.

A3
" .t A TAT M Mt TR AT A R L Y 2 ¥ ot -ae ..'.--."..
AR R R R R R R R R
RN S NN D A AN I N AR ALK NN TN AT SO RSRA
R N T e T e e s

-2 N
[T3

A
e hx

aAd
-‘:'.1
l‘}l

sl
[N
J':"x

}ﬁ‘,:i '1 []
e

Yy

p;

SR Tal LN
LA R P,
5 % Q <
£ =fz}

AL
e o

X/
i

L ¢

)
\
L]
‘
EACNS

e]
a e
I'" o

y <

: l’ £
5
7,

U AP

P . T L

P4

AR
L]

Y
A

.
oy

[3
by
»

-l i
]
2 AL
e
3353

&2

A.1.4 Product Assurance

VLt Product Assurance

1 - - -
L
Pronhi t Vo e ivobves denoanstiating the cotte Guess aml qualil\ ol a seltwate product ol \ '.'.I:: q/‘
. . . aweetnde e
vl fovel of the aottware hle ovele Hagher guality soltwane e acdiieved the carlier mdependent "t"\"w
»
vertfication and valulation of a syatem ocenrs e the e cyvde To provade o quality paedaet _-\4'."’ o’

adequate resonrces for test planning along with organized conmmication between the acquimition

agent, development contractor, test agent, support agent and user arve essenlinl - For stenuzed
problems see tables A LG & and A6 O

A.1.6 Trausition

o
Transition refers Lo the change in the software life cycle from one activity to another. Two examples

N c';s|v;\.
. . - . . »

involve the more difficult transitions from exploratory research to engineering development and 'q‘.:ézz'a:::'
from development to support (also known as maintenance). Problems occur because the transition e .:o.":
from exploratory research to engineering development is characterized by new and rapidly changing) QA

technology, and contrarily, maintenance requires a stable technology base. For itemized problems
see tables A.1.6-10 and A.1.6-11.

A.1.6 Life Cycle Problem Tables

The following tables show the problems which surfaced in each of the Life Cycle categories.

o

Ny
Lol

4
?

L,

>

LN
{::-.{'.'.'.s
7 ®

.
"
-

’s

XAarg
X ' o
[ef LS

ﬁ:'." s’&f.

AL
X7
re
.
e

A-4
- O R R N T R S ALY
A A e N s W e a0 NS P AP P s
ﬁf&“’: NN W j\.}s AN -.'\}\:N:\}u';\ﬁ-.:_};.;-..'_\ SONAN -\.';‘-. e e e T
’ f\f L, o AR N (oY AN AT N RS0 N NN A NN N
‘:‘. (R \‘.\."bJ.L :?l‘hl‘-.l'lj By LI LR e Ui S e Ly n 3 U .. 8% W] N, X

A.1.6 Life Cycle Problein Tables

Table A.1.6-1: Conventional Software Requirements

PROBLEM STATEMENT SOURCE(S)
1. Poor Communication Skills. f
2. Diverse interpretation of requirements. c d f
3. Requirements defined according to cost and schedule con- b ¢ f
straints.
4. Inadequacy of English prose for software requirements. c f h
5. Excessive detail in requirements allocation. b f
6. System design characteristics appear in requirements docu- f
mentation.
7. Software is severely impacted by requirement changes. b ¢ d e f h
8. Poor cost estimation analysis. c d e f
9. Hardware changes made with little knowledge of software im- b f
plications.
10. Requirement changes are costly. b ¢ d f
11. Lack of valid engineering data to define what is cost effective [
for support requirements.
12. A support agent is not selected until late in process. b f
13. No operational concept developed. b f
14. Concurrency of the configuration of the trainer system does
not always correspond to that of the primary weapon sytem.
15. Protection of classified software. f
16. Security causes increased complexity due to the number of f
systems and levels of security required.
17. Non-standard systems must be able to interface with others. [
I8 Requirements are not conerete before development begins. b ¢
1. Management budgets and schedules the software project
without a true understanding of the requirements.
20, There exists an inadequate understanding of the product to b ¢
be developed.
Systems continue to grow in complexity. d e

.}‘-,:-’-
Xz Py

s

W
< n";
- A

9
Vi

y e S
Py
-"'I.‘ '::
2
s

e

'n"
s
4

/‘.
)
)

<

Y
%e
e

vy
o
..1‘

s

v
.

+
AN

A.1.8 Life Cycle Problem Tables

Table A.1.6-2: Artificial Intelligence Requirements

PROBLEM STATEMENT

SOURCE(S)

Requirements oriented methods and intu-
itions learned in the development of other
types of software do not carry over well to
the knowledge engineering task.

A major difficulty in the application of Arti-
ficial Intelligence (Al) systems is in obtaining
a complete specification.

Problemn Statements are inconsistent or in-
complete in matching requirements to the f-
nal product.

Poor communication between engineers and
experts.

Knowledge principles and problem-solving
techniques are difficult to translate into a
knowledge base to be used by an expert sys-
tem.

The knowledge is often ill-specified because
the expert cannot always express exactly what
he knows about his domain.

When available at all, experts have little time
at their disposal.

The knowledge acquisition phase is one of the
most difficult and time consuming phases of
expert system building.

Problem in determining the kind of knowledge

required for an Al system.

m

Overlapping Al References: 2(Management), 7(Design Attributes).

~~—wY,
r"'
LA
- i -

b 3 ’ﬁ;h v
(X7 /
s ORELL A

2

Ny
LA/
l.

hy 4
%

<

A ._; NS

1Yy o v,
Fs
«

Ly

LAY
P,

T) ﬁ.{"f

2
29

3
f"‘"

e

o

o g

T

: '." "'.: ;.' 'v' R
"/-"1.1‘ .-' ., ,.'. ()
AN LW

Cre L
N

[4
n"ﬂ._ I
» ""v Yy '

AR A hen 800 AR Pt 0 " wt . e ; .
ANANY N, vy P S pin) 0 4* KV a S Rt > g M R P g ¥ AW T, W ¥y 8, S

)
I
L 4
A.1.6 Life Cycle Problem Tables ,W’ %
5 ” o
\ R
\ e
Table A.1.8-3: Conventional Sofiware Management Ky :}:- 4
i PROBLEM STATEMENT SOURCE(S) (s
e
1. Lack of skilled software program managers. b f g h M
2. Air Force uses inexperienced, junior officers to direct pro- f
: grams. j‘_;:: !
f 3. Misunderstanding of acquisition concepts. b f ::::::
4. Belief that hardware and software can be developed and sup- f -::'\.:'s-“_:
ported by different concerns without strong engineering in- -{;;’:
fluence. »
{ 5. Prototyping used to sell a system but does not achieve its f) S"ﬁ
! goal of risk reduction. ',‘ll’:‘.'.
6. Incompatibilities between State Department and DOD deci- c f :":"o’é
sions. (S \
7. Lack of communication. b ¢ f N 3
: 8. Problem with the transfer of technological issues and the clas- c v::‘_:f)
’ sification of data. ey
9. No clear assignment of responsibility and authority given to f ,";:i\’ :
those working for management. o ? ‘
10. Lack of useful data on projects making progress difficult to c f “‘9‘% o
measure. _:f:.:_-. -1
11. Lack of historical metrics and models. b ¢ d f AN
12. Vague requirements definitions for complex systems. C f ,‘;::*JE
13. Lack of tracking tools and planning. c f "if:'.’-.":r
v 14. Need for thorough software Development Plan to check va- c f - w
N lidity. ‘;‘-::\f-
15. Lack of performance monitors and modeling tools. c f :.r::.::
i 16. Management budgets and schedules without a true under- :-*'-\:':
standing of the requirements. NN
17. Often unrealistic budgets are drawn up just to win a contract [a b g ®
proposal. ‘:_':::‘
[18. Inaccuracies in software cost estimation models and tech- {a b ¢ d e g ::::- j:::
b niqtics. " I
y 19. Contractual budget commitment is often made before Pre- g ~:..::_ .
liminary Design Review(PDR) occurs. .
20. Software is not reported properly in large system status re- b ¢ 4 \“.:E'}: ,
A ports. '.\':;-.‘_E\ ‘
5 21. High risk software is not addressed in reports and/or reviews. b ¢ g ':i:ﬁ-.

Continued on the following page

B A e A R
' - (Wl Vol S Rl P} AL R S TR AT .‘- Al ..- '- - .
e N AR A N
Wy , ~f~f\.'~(,‘(‘.f_'-', S AU .-,:.-_.a_ AL _'.P,‘
JC ST N Lo - PN PRI NN MM NN

2 & & |

r

- - o

A.1.6 Life Cycle Problem Tables

Table A.1.6-4: Conventional Software Management (Cont.)

PROBLEM STATEMENT SOURCE(S)

22. Software status reports are too detailed to provide useful in- b ¢
formation or too costly to be prepared correctly.

23. Insufficient time for high level management to respond to b ¢
potential problems indicated in status reports.

24. Good advice is sometimes ignored by program offices.

25. Cost information is rarely correlated with technical informa- ¢
tion for management purposes.

26. Management needs more information provided to identify c
where DOD software costs are occurring.

27. A high turnover rate of military software management per- c
sonnel occurs in many program offices.

28. Very little knowledge available to acquisition managers for e
selecting the hardware, software, and firmware configuration
items of a system.

x
9L

LA
e e

Pl

$
s

Je

P

AT

Ny
"" .<l~ .
LI)

2,7
JEK
3 e

[}
~',i .

Ty o]
"'-(‘.

'..)
b}

é
£

0

[
LT
P -
£

o8
5
LY

R

o aa® 0”4 ¥a® e’ beade® ‘. . te” b’ .
20, 40° 40", ¥ !

A.1.6 Life Cycle Problem Tables

Table A.1.6-5: Artificial Intelligence Management

Existing Al systems cover too narrow a range
of expertise.

Lack of sufficient funding of Al projects exists.
Lack of strong management to guide an Al
project through completion causes difficulties.
Do not know how to manage the transfer of
progressive and evolutionary technology.
Knowledge engineering is often considered by
management to be a technology that is far too
difficult to even attempt.

There are difficulties in scaling from the cur-
rent project sizes to large knowledge based
systems.

m o q s Lt u
r t
L
p

Overlapping Al References: 1(Requirements), 3(Requirements), 1{Acquisition), 1{Product As-
surance), 1(Disciplined Methods), 1(Metrics), 2(Metrics), 1(Design Attributes), 7(Design At-
tributes), 1(Skills), 1(Availability).

‘»
o

[4
s

;.(s"
e

P

Yh7

1%
S by
‘:"'1 \ s b
Il
»49}

‘-.' eyt

et
e
20
’.

‘u‘:’
'.I‘
o

L4
[]

hY
[4

'
-

i@,

1 g

o A,

Wl d
o
-'.r‘| .

v
o

’¢
'

oy
£l

'I.f
7,
2,

he 3
x

Y’

)

Y.

‘f. P

L e
<
1 ..‘..

o i

55
AP s

'l"&r

i
P

s

R
CaS
LYy
'$f sl '.‘ b

n

)
>
>

o

ey,
'i
24
ok
’

5
7’7

> P4
;?;;&:"
Pl g)
P
455
P (IO P

22

LAk

IS
2l
£¢ 4

g
&
o
g

.2
hTh)
’?

< 4 &

o

o

i
A

A.1.6 Life Cycle Problem Tables

D)
f,
%

¥
L,

g o
b

(R

Table A.1.6-6: Conventional Software Acquisition

PROBLEM STATEMENT SOURCE(S)
1. Many software contracts are inappropriate as they are de- f
signed for hardware.
2. Changing requirements are not controlled. f
3. Software development tools are not required deliverables. f
4. No funds for software tools or documentation. (
5. Software cannot be carefully tracked or measured. b ¢ f h
6. Documentation requirements are often starved for funds. f
7. Documentation is over-whelming in volume but marginal in f h
value.
8. Requirements and design changes are not managed well, if at b f
all.
9. Design changes are rarely made with the complete life cycle | a c f
in mind. e
10. Decisions made with little consideration of cost over the life | a d f :_f_:_:-:_
cycle. .:::.:.::
11. Even when software is not a primary cost or deliverable, it c :‘::’:-'
can have a large impact on system costs and schedules. Sl
12. Need to improve software acquisition management with more ¢
detail in early stages of development. R
Yo
LY

Ve

rewy a8 0 LA A Bt M e St At N .
e ! @ L A BN P W Ve W WL LY LN) v, = q ikl Al S BN D . a2 g
A A il Sl gl ol Sah sadh eoli % LA AR 00 2 0 -t 0y 2 gy 4 o~
. A R AR . A RO A= e

i ‘
R R
vy L
1y T
::' A.1.6 Life Cycle Problem Tables S
My '::
,'l "-.
‘.‘o' :\
Table A.1.6-7: Artificial Intelligence Acquisition
N
o PROBLEM STATEMENT SOURCE(S)
N
E» 1. The rapid prototyping method does not offer p
k) a clear guidance on how to produce a well-
" engineered commercial product.
e
[2. With rapid prototyping, the system is always p
e in a state of flux.
~ .
- 3. A precise set of tools needed to solve a prob- p
™ lem cannot be identified before the implemen-
) tation phase.
v 4. Representations at too specific or at too low o
7 a level yield problems in integration, mainte-
1', nance and extensibility.
K : - T N
K Overlapping Al References: 3(Requirements), 4(Management), 1(Disciplined Methods). ;‘;-‘:
N N
s Y
oY \1‘
N .
1 W\
N
k) w . g'
% oA
A P
o, AN
. MY
K n.'-- ’,
MY N
s
- .'!.‘
s
- Y
DA
v -:"-;‘-
~ ~ o
” RN
- AR
» A 1
4 N
o N
~4
! 20,
v"\ <.
-~ N
- S
. Y
="a AR
o
» -
: s
\ .'h:
OO
A &Y

- . . < } .
. - . o 1 - R ..-_.- y % \.‘ 2% el .-.J-,L
AN A R @ @
» . * LN . o o T
PORAA S RN RORC, AR XA AN 2.4 B T Y A RN Sl Ay _n.\..\..x. L I A e N R A .
c{\l\f\fﬁfﬂfﬂﬂ“f. ..-\)\..\.-\..\-.\{ A s \.‘.....-». ¥ \f\ P4 \.-V L el .-;-.\-v . P lS2 \.-»\I st UL LR A LA A A P
- . a & . - . . .
n = =
]
"\lw - — - - - -
Z
E s
z © ©
b A
_ -]) o
[o = L [

CNT

)
4

M

+
4

Table A.1.6-8: Conventional Software Product Assurance
PROBLEM STATE

Lack of criteria to determine how much testing is necessary
lesting effort requires a significant amount of money.

at each stage of software development.
There exists a high potential for a significant lapse in support

Testing is often governed by the time and money available.
during early deployment stages.

Test tools are not a real measure of a products assurance.
The testing of some requirements is extremely difficult to

sitnulate.
Incomplete or vague functional specifications cause errors dis-

covered only during testing.
Software testing is not always provided throughout the entire

program life cycle.
Independent Verification and Validation (1V&V) strategies

are costly.
Frrors exist in software after deployment to the user com-

Software test planning does not receive an adequate share of
mand regardless of the testing effect.

total resources.

3
”
’

.1.6 Life Cycle Problem Tables
1
2
3
4
5
6.
7
8
9
10
i

\ . : | LA ’ Sh%ASh W N N f.-.-ff-v
LS TP LA LA AN ' . CALYS S AR NN 24 IR ARAN LARAL
M) w_ s 0 2] l--- p 4 A) b e T e a O or t S . . LAY
Sa ‘I-.A-U\...l.‘f\n--f\- .-L_ «n-h-\.\---unl-\- . \I AN\NFJD 5..1-\-"--.:\.\-\-.. .s'...\.\\. AR Follagees! ’ ..-”Vf_-'p-\
LA/
M
S
- &Y
o P,
= = P
-m - @ P
&~ 4
g - 2
T ~
ry =
o o
&~ — o o 0
< <z =
] o = 2
— -
S s % <
O 3 |= e
< z 12 5
onmy 4 ' 4]
- < v o [a)]
o o =%
4 g .
~ < —_ =z
£ =
A
P E
@
m g
2 4
= %] L~ [-]
3 g Bg & T £
[= ® m) ©
=] g g e £2 1=
2 d S & S 325 .m
©
< = E§ 3 B8
= ° = =
Tl » T2 3B w2 2|¢
Zl T 22 2 o3 813
& s Fy 53 8 £ 8 = —_
® ° a g ~ ® o8 3
4 =] [} -] Q r.Jm — -
== = =2 9 K] g &35]% 2
< |« rm £ O = m.la. of|. 2
I 3 0." =] u-w ““
L2l B 22 7 SEB|SE
Q=S 88 .5 o SER|E
-_— e O g, Q m o |- g
o= £ 29 e 80 s | w
= - = s ®*°l% g
0] 2= @ = o = [+ ”
O BA m..n o = =] lD
2 S - 2 £ 0 9wl
» @ [] - =] a
(% © 0 2w 4, SS9 glew -
o ¥ 28 ¢ B Elsw
-, R - ol ¢
s5 "gesapgzii|es
£ m oI o Y e 3 & 5
2 < Cem3I<x T
[<]
. P -
— o~ ™ - O <

TARA Y N A A RN ¥l “At, - e rte AL Al tul talsal St uad oph SRS Ay Pl AN i Al Sl .\x- V¥ o v T mt A Lt AN .\-.'-..:-
A
R
R
-
p A.1.6 Life Cycle Problem Tables -_,.:':.‘» %
It
"k
-Jﬁ..'\ "
AN
St
' "Y');?l;
" SRS
Table A.1.6-10: Conventional Software Transition :",['i}!
) Y Q ’ ".’,’y‘:‘;)
3 PROBLEM STATEMENT SOURCE(S) .‘V‘.',';‘,!f:'
p ¢ xt.:'_;::
i 1. Rapid changes in technology. a b d f
2. Post engineering data becomes obsolete very quickly. f :f};_;:.
3. Microprocessors and firmware are forced under software or e) '_;-\-"-"
y hardware guidelines.)
4. Need to develop a unique policy for microprocessors and f
firmware.

5. Need for flexibility to adapt to technological change.

6. Inability to develop and validate system and tactical software
requirements and evaluate doctrinal problems.

7. Insufficient acceptance testing performance on a regular basis c f
for automated systems.

8. Necessary to develop and support automation.

9. Need for a single, integrated set of procedures, guidelines, c

and standards for development of automated systems.
10. Lack of identification and use of an effective procedure for b ¢ f

system development.
11. Automated Systems have poorly defined function and inter- d f

face requirements specifications.
12. Automated Systems lack proper modularization, use f

machine-orientated languages, and are inadequately docu-

mented. .
13. Most Research & Development (R&D) work is not aimed at f :'_

a specific weapon system. :.J'::J"'
14. Rarely is the transition made from the useful techniques and f :::E

o

tools of R&D to operational systems.

5

15. Post Deployment Software Support has to reorient its work | a b g
force from traditional logistics and maintenance functions to
advanced technology support.

16. Lack of discipline in software development methodology. b ¢ h
17. Delays in delivery of software has a large impact on system c
costs and schedules. -
. . . NS
18. Need to educate involved organizations before useful output c QSR
. . oA
is obtained. \.:\._\:
19 Need a specification or set of criteria to aid in the documen- e :.r:'.r';,-‘
tation selection process. AaTn
®
Y
AT
'.':J-\-\
e "kw.
PN
A-14 P
(0% 0% e
@
G
: T I R Ry S S PRI LY ST RPN
o e AR W X (PO 15 NLTRRN \q ‘.'\‘..‘,\ K R ."l"“!,-'-f'\,*, F) > f'.f.'f.'f.'fx o " = !
digtho! N :.):: N ::"n M* N N":"':f‘-“'.'\‘:u}-fuw."-‘ I AR /ot T A I S A AL G Ot
NN - I '\"’u"-.\“' AL O R C N GO A Wy o
Wit o iy IS < o
o 0,00,4000 ".q.!.b‘!‘!..l. ol XN AN AN AR RO RGN) s Ay LA

8.3 B.a" 8e'sg 2 ol et Vol < N -l 0ad" rorramm o’ el 4 .p ‘ay kg e el

: R
oldes
L]
; . A.1.6 Life Cycle Problem Tables :AE? :- .:
o
NN
Table A.1.6-11: Artificial Intelligence Transition S
PROBLEM STATEMENT SOURCE(S) \
1. Expansion of technology in the next five years | i s u
will be explosive.
2. Terminology is inconsistent in the Al world. k m
3. Systems only evolve gradually because it takes k
a good deal of experimentation to achieve high
performance.
4. Al systems require a continuous relationship t
with an expert.
5. Eventually, as a result of Al systems, automa- m

tion will occur and many jobs will disappear
or change radically.

6. No programs exist yet which can understand s
simple, mechanical causality.

7. Al systems are unable to recognize or deal k
with problems for which their own knowledge
is inapplicable.

8. Al methods must be augmented with conven- p
tional techniques to solve real problems.

Overlapping Al References: 1(Management), 4(Management), 1(Acquisition), 2(Acquisition),
3(Acquisition), 1(Tools), 9(Design Attributes), 1(Skills), 1{Availability).

*
Cof
i)

.

.I
T
oy

‘:'.
P

A-15 2

)

O
~ R L% -~ Y WL AT A A AT A A LT R T D L B D L UL L U P e R U T SRR N ‘-._‘-\'.\.
o g) J‘\ﬁ~f~w~)\f;\f\a‘$\1‘4...‘_'f‘. e e T e e A e L S A AN RN RTA LA
(A o P o o P T T P T B T P T T P T B R e e e T T A e T T W N T L S
o N T T i S e R e T A AR LGN
W ALY AL GA R RN CL A AN CR A NN T LN A NS W S N AT R AONT A RSN

A.2 Environment

A.2 Environment

N The section on environment examines tools and methodologies involved in the development and
in-service support of computer software. Five major categories which have surfaced are described:
Disciplined Methods, Labor-intensive, Tools, Reinvention and Capital Investment.

- -

A.2.1 Disciplined Methods

. (:
DDAV

Disciplined methods refers to the use of adequate engineering discipline in software activities. Lack
of software discipline varies from those who fail to apply the required discipline to n soltware
problem, to those who fail to recognize the need for software discipline. The result is lack of
enforcement of good programming standards which includes effective use of structured programming
techniques, inefficient software configuration management, lack of baselining and documentation,

and an insufficient system engineering technique applied to a program. For itemized problems see
tables A.2.6-12 and A.2.6-13.

o
Py

- o

A.2.2 Labor Intensive

Since software is a labor-intensive technology, methods to improve the efficiency of people are a
continuous concern. One means to increase productivity is the automation of manual processes.
Another suggested means, is not only to reduce mechanical human activities, but to enhance

‘ creative possibilities through automated systems. For itemized problems see tables A.2.6-14 and
A.2.6-15.

A.2.3 Tools

-\ -" -
' Ry
1 Development and support tools are needed to improve productivity in design, coding, test, support g
‘ and management. Due to the diversity and complexity of systems, emphasis is placed on tools and ’::ﬁ:. :
procedures with wide-spread application. The needs for automated software design and support :'_ *::J".:
tools include uniform, portable, yet tailored tools with applications towards each phase of the ®
software life cycle. Other desirable tools include: software documentation systems; configuration :::;"'::
management systems; data base management systems; management information systems; software AR
libraries; and comprehensive software development, support and test tools (editors, code syntax ?"-f{
checkers, scenario generators, operational test data reduction software, etc.). For itemized problems -;\-"'-;-\
) see tables A 2.6-16 and A.2.6-17. bl

Ny

'. ‘:' \-’.‘-' " .‘-‘

A.24 Reinvention

Remvention refers to the inability of software development to reuse functionally similar software

developed for other systems resuiting in higher development costs. For itemized problems see tables
A.2.6-18 and A.2.6-19.

o]
Py

0
?? e

r 3

A-16

'c'(fn‘

NS

R G R T O L G e Ty Y Vg T VALY
e ~$~a~w B QN A M ST AN 7
)

gt e, St
.' .bﬁo LRGN CRN),-\’ . o
PO CAT A OGO N U X nL Wl Wl Lt AL

U

VS AY

J\f

)
~
N

AN

o

LN
\J'

~
P ¥
s

N S S A "._-' .
.!}:ﬁ.:\(:'\.- YRR RN

A.2.5 Capital Investment

A.2.6 Capital Investment

Capital investment is required to solve many existing software problems. Yet, software is given a
lower priority in funding by the DOD. The funds allocated for capital investment and labor are
signficantly lower than the estimated need. For example, there is an unwillingness to make the
essential capital investment required to provide better support environments with an ultimate goal
of improving software engineering and eliminating reinvention. For itemized problems see tables
A.2.6-20 and A.2.6-21.

A.2.6 Environment Problem Tables

The following tables show the problems which surfaced in each of the Environment categories.

AN S St Sl A
7, "\' ﬂ-l'_ "
'.'-.\ AR

! B
- A - 2 . »)

1

(]

5
Y

&

s
A,
:"*\':

Y

e] PR S
.-&1,'/31 NI
MNP AP A I
) AEAXNAS A

'z

..
(l
e

»
s
-
»

s e
e
ag e

Uiy

L

PN
YN

A
g

<

rLl S
’
s
s

hY

<

SN
! ’x,\"\' o
a a;‘s V1@

Xy
!
1 4
-
r
]
'-
.
[)
[§
[]
P,
14
A
14
[}
L]
1]
1]
1]
.
[]
’
1]
1]
L[]
.
.
.
.
.
» v
'y
'."
L
y % %

. .
[AR

S T

j L
: RN
% A.2.6 Environment Problem Tables N

Ly :-P:.‘:

- RS

o’ -,:"

>

. Table A.2.6-12: Conventional Software Disciplined Methods
3 PROBLEM STATEMENT SOURCE(S) .
::n N
‘ I\
:'. 1. Retraining of individuals is costly so movement is not pro- f : o,
N moted. .:- !
. 2. Contractor’'s software tools rarely leave their shops when the I

product is delivered. N\ \'."
o 3. Lack of consistent, disciplined methods impact Embedded f '_-.::._
'_:: Computer Systems (ECS) because the software is developed ;.\;._:
Lo by independent groups. AN

! 4. Need for better definitions of software terms, measures of c d h o
o software qualities, and methods of measuring them. -r_:r»
»

',' 5. Differing policies exist among various Federal agencies and h ::’;:

N industry. f.:-_':\

’ 6. Lack of standardization of Data Item Descriptions. h j;:':\'
7. Within DOD, partial and inadequate standards exist. h . .,.

) 8. Standards are rigid and lack the ability to be tailored. b h A
e 9. Lack of well-defined, consistent requirements causes Software c h ._:__.-:';
. Quality Assurance difficulties. ':::-::’
. 10. No standard set of software acceptance criteria within DOD. b ¢ h t-';

It. Government standards do not recognize that differences in h it _"

N program size should influence the decision to apply standards. '_::-“::‘
o 12. Standards address too much detail disregarding the end prod- h ::-:;:r"‘
i uct ohjectives. Rt)
e ,'_
N-. ‘:I "

b ‘:\::S_-

. AYAY

- .\j\:: y
- i

: NS

o
L
% 5
3 -
_..-I.I.
KRS8
' R
KRG
N
) .\.'_:-}:-
®

- NN

RN
AR
‘l: :\::{::;\ ;

: A-18 RGN

X e : : /5! . it . N S G ‘ ANSA S S5 i)) -

s seonmoaptess e A ST e A T eSO o o[el

A MG A A . . AR Tl i S S G K S TS0 e R e e A A ,..W_.. V)
AR AU O e A e ORI LA/ < X WA Zor s of SR N Rk AT

1\(\-\.-\!\-\.-\‘!& A \-\F\r\-.\ [P .r.-.\(r \\\.f.-.\”. .m-\v L Yo B T T TR i o i .\.\.ﬂ-l H-» AR ..ﬁr\ﬂ\ﬁ V.nvun\? uf...c-f

£
I
3]
<
—
—
S
| 9
R
- n [Y
&= (.
g 2 E
e s |z
= =
> T |I=)
~] mO —
= Z |# 3
© F: s
o a =
< 8 o~
€ —=
%0 m o
= iz =
s 4 2]
1] E5E I3 P
= s 2 v ~
3 23e |-
‘9 ° & —~
< t58 |5
< L85 |8
tlel &€ £
4 edn [}
18 w3l |2
& B aw? |
; JE= 08 N
N e - ..
< = > S e
17} .&m.o]
hM rr.w m
..w o R 14
[< o B [
= |- -0 b
S m.m,u <
P [
3% |z
s$88 |2
[w
T2§c|2
®
. >
- Qo

- A, , o

B S o & X N A Y Gy] AR Sy g
T L Z, _ LACpee NSRS I A 2 RIS - @ O
.w.#ﬂw o .:M.. erd PNRSY ~..r....rm. .\wxwm.n.mw.-ﬂ\.“) .,'....:..Hs...........‘.ﬁu Q.%\..Hﬁf...f... P AR ° el ..M..Hru..“...ﬂ ﬂ.m I
S 3 o ey e L ST 4 Y SAN R N rrer
. SAAMNNAN Shhh, P AR . SENSVAALSLY S . e [Ny
a CA A AL A SO R AL/ RN R TR A MMM Iy J P AL AL PRSI . LAl Y] LS
\M-N\MA.J_ SN ..f.m ooty B SORCACORIN SRRl BEEADE S XA SRR S B £ A Wy INSIRY 7
L R 2 & d
¢
7
”
/]
¢
4
\Z5 N
e
5]
Q
. o |&
2 w
L]
f 5 |«
-
4 e
bt
. ™
o, o
1
4]
3 3
nl m "
B} a n
d 2 o
: 1
: 771 s &
-. ||a. m o
[o0
g & =
: ‘2 |k= - @
4 2 = 8
> | 2@ ¥s
. g < o«
: 2 SIE| 28
. r el §£°3C
. n - | S O =
g 8 © ol & ¢ @
K ™S g w]
L < & 2 o £
o — g 2 .9
t fog L0 o . S
: R, -3 o) e . 2
b [~ 0. 0 mw .©
H e o fm
: g £ o =
m -2k
' S o
- o @ = 2
> S & o
8 & 2
s E Q = &
E E B £
¥ @
s o .
by A -t ™

¢ -v- e ‘ e h = g v - » » LN
ey WA, el s NV @
iy Ay A e
AR AR ux b g u..J‘..” f\..._....wuu_
l-\-.\-.\?\..- \r&.. ELA RN, \u-\-\ P &L

A.2.6 Environment Problem Tables
SOURCE(S)

{
A-21

~

~

ing o

tion and structur

knowledge is a manual process.
Overlapping Al References: 1(Skills), 1{ Availability).
."
o,

Table A.2.6-15: Artificial Intelligence Labor Intensive
, organiza

PROBLEM STATEMENT

Acquisition

1.

S E R KRR)
: I-’:{I '
?";N:"pi
e
A.2.6 Environment Problem Tables :&-.r.;‘\;\
AN
\-"h"‘-'.\ [
A ONE
NS
NN S
Table A.2.6-16: Conventional Software Tools o '.:_
PROBLEM STATEMENT SOURCE(S) '{f,\';-‘.;:
Qe
1. Contractor is often forced to use a government tool which f K r:f_:-;
requires use of an unfamiliar system. [t
2. Need for standardization of high order programming lan- f
guages.
3. Deviations in language definition and implementation forbids f
transportability of High Order Language (HOL) programs.
4. Lack of consistent standards for software causes problems in f h
acquisition and development.
5. Effective and efficient maintenance is difficult. f
6. Software is often re-engineered. a f g
7. Tools are unavailable, unpublicized, difficult to understand | a c f g h

or use, or inefficient.
8. Inconsistent computer support of software development. c f

9. Difficulties in transitioning generic (non-weapon) specific
soltware tools to weapon system programs.
10. Non-modular tools are: f

e expensive;
e untimely;

e difficult to maintain;

e inflexible to change;

L0 s";'? 3
1 PY
e unreliable; and PR
. . B RN
e non-responsive to user requirements. "\"-:';\"
e o
AR,
[y . . o "In"h
It | } b] . Lo cab oo [K Ao
®
\.- I.. -.._ LY
vl et Caget processors, NN
RN A
. . s \n.\-‘\-f,
12, Resource constraints only allow a minimal number of tools [AN
AN
to be developed. N
"\'\'\.’ «
13, Poor documentation of tools results in a lower level of quality f R VA
resnlts of the system. e :
Nomuaiformi | ALY
14 on-umformity among tools. NRERN
. AN
15 Strive for language independence rather than support for a f e
- AN
specific language. .:.!:_, v
N N . . -- ‘A‘-‘
16 Should apply existing tools. c g -

[N

Py ey PO STy Y R . 3 el W e N S N DRRIOTNIG . T ARG AINCC RS R b
20, @ = A\ o .m..V o b A N A A @ N NN AN O SN LGN Wy @7 s o r..f...«.......f.....p.. Y”.r.. AP
o X A A i AT N SRR wata D tepb sl AT A A Aol AR s seL7
b2 A X ..f.-.x & v..rl s .W # Wl ..w\..\.....m HLLEAEE r..f.u.\«.-....iu.f\r PARIARIIE NS wu AN Tt v, x a..nv..fmv.-ﬂ-. p ..Nm...\.r 3
s SRR RN o)

Y,

. f » » 'S » 0 . o 8 L]
-\.v-l-\b!-..u vl-h \J F n-\ull-hi -n\.-\ﬂ\.u N .r. .-./ e ol .I, W..- SN I .f ! u.f\(. (\f. .v. (\f. . \.. .s. e \.,\-.\... ..\. _Tr-lt -{ -;. hJ 2" ‘s ' - \u <, - -

a ra

A.2.6 Environment Problem Tables
SOURCE(S)
y -
“ '\.

Table A.2.6-1T7: Artificial Intelligence Tools
A-23
’
'

PROBLEM STATEMENT
Coet performance standards are not fully un-
"
)
Pd

derstood yet.
v,
o
I:l

1.

A.2.6 Environment Problem Tables

Table A.2.6-18: Conventional Software Reinvention
PROBLEM STATEMENT SOURCE(S)

Designs and implementations of previous systems are not cap-
tured and reused in succeeding systems.

A rigorous interface standard must be provided for all candi-
date reusable components.

A library of reusable components must evolve for use by all
development activities.

An index of reusable components must be included.

A rigorous design standard must be provided for any major

software system or subsystem to be implemented as a skele-
ton.

A library of subsystem or system skeletons must be provided.
A set of supporting tools must be implemented.

Most application-specific software is developed new for each
application.

>\
v

-'.“

o \.l.

4
Lot B i B 4

vy
vv'd

P A

IR

e .f‘.1)

.

z e 8

LSy N v e

pANSS e bl

o LSatsw B A L Y

A.2.6 Environment Problem Tables

AL Qi

Table A.2.6-19: Artificial Intelligence Reinvention

PROBLEM STATEMENT

i

0 » -n-nhu.~
Lo P L)
P .a..a..u‘......‘&‘\w
A

SOURCE(S)

99. None Noted

{0
OLENAL,

Overlapping Al References: 2(Acquisition), 4(Transition), 6(Transition), 8(Transition).

eLrY C

-

N)

PRSCI R R »
sy @ 40, @
._\\..\.....x\ YV Y YR

DR R N LA Sl A

. [N -...4 J-. ,.
e @100

SIS e, telelele

A-25

SR AP EYY. © SARANSER R AARANEN Y X XA PRI RN AP L LA CXAA

w..ﬁ\l-

S AN

w...\...,.. s

L

LR
NS
AREE

A.2.6 Environment Problem Tables

Pl it

Table A.2.6-20: Conventional Software Capital Investiient

PROBLEM STATEMENT

2 @

s])
\fh! P] s
—

S L L)

g

-

=

= (5}
b

A

b

Many DOD Computer Support facilities are overloaded and
use aging equipment.

l.

Software is developed on target hardware which is not de-

signed to support such development.

2.

Lack of sufficient time is spent on Independent Research and

Development.

3.

Schedule slips occur resulting in cost and resource consump-

tion.

4.

Major software costs in development, operation, and mainte-

nance phases.

5.

LA A

s s %e

L4

%ﬁ

U,

A-26

T QLY

LA A A
By

2000e

NN A

L Al

NIV
RAAAL
Y

n

)

A AR

A.2.6 Environment Problem Tables

Table A.2.6-21: Artificial Intelligence Capital Investment

SOURCE(S)

PROBLEM STATEMENT

99. None Noted

Overlapping Al References: 2(Management).

A5as5 5y TN : , A AR MO i Caa
SL ATl SR _ L H..a..”....x oy @y @ ML
ERIR S I U A AP : LIRS S T A] A
. Pa * te - .»u P \-\-\ LI . N 2 .
SO SA R AP AR e R I A A S AR AR
r~
nJ-
<
y 3 @ 3 by gty - AT “ e L) DRPre . P Bas n caen -y ~

AR R RV ", R A U R R N Y A LV N 0 8-

2 oAt
X 7
' ;.-,d‘

p @
3y S VLW
X A.3 Software Product f:":\’
. s
W P
iy f}":n'
] A.3 Software Product e

®
] .|
ra The software product consists of the operational embedded computer software as well as the mate- ::\;‘
: rials necessary for life cycle support - requirement and design specifications, source code, test data, ;:_,.'
N system generation data, unique support tools etc. The following five categories briefly describe .:" oy
va some subdivisions within the Software Product: Doesn’t Meet the Need; Software Metrics; Design '
Attributes; Documentation and Immutable Software, T
K o "
B R

A A.3.1 Doesn’t Meet the Need ._-_;_‘:-.;.~
L] L% *
L *

. : : : N
. The section refers to the failure of the deployed system to meet the user’s need. One such situation TR
- occurs when requirements are either stated or implemented incorrectly which resuits in changes to v
h correct the problems. For itemized problems see tables A.3.6-22 and A.3.6-23. Ay
ke ::P-';:

i Py,

‘ . b
! A.3.2 Software Metrics Ry
£ AN
> Software metrics are aimed at providing analytic models and empirical data on software to aid in ;:_‘,_Q_;.
Py the choice of software engineering techniques, estimate development resources, and evaluate future $\::'\i
b costs. For itemized problems see tables A.3.6-24 and A.3.6-25. :'.*_‘2:
» o
D -f\ ~f
’ . . Y

A.3.3 Design Attributes s

v R
. DGR
g The Design provides an acceptable programming solution to the problems stipulated in the Require- RN
T " . . e A
i ments Specification. As such, the design specification contains a solutinn to the user’s problem. ENEN
- For itemized problems see tables A.3.6-26 to A.3.6-28. Taad
) 0

Y
: . Ty
g A.3.4 Documentation - AN

- . -%
> .:,\.:,.\f.
: Documentation should convey information on or about the computer system developed. Both e '
) managerial and technical work should be included as well as transitional documentation helpful in ::l"\.

bridging the gap between phases. Also, documentation serves as a baseline from which changes

or upgrades a-e made. Although documentation is an important aspect in the development of _},-:';':"'
> computer systems, the resources allocated do not reflect the actual costs necessary to produce -"::-:_:f

adequate documentat:n. For itemized problems see tables A.3.6-29 and A.3.6-30. '.::.r:::r

A A Al
) QAN
] o

A.3.5 Immutable Software ..
¢ -

(4 ot W
f This section refers to software packages that are system unique, non-portable and non-reusable. AN
9 Software developed for embedded computer systeins is generally tailored Lo the specific application B
. and hardware environment, without regard for reusability. Consequently, acquisition agencies are :{:-:::-"

forced to pay over and over again for software that has essentially been written elsewhere. For
itetized problems see tables A.3.6-31 and A.3.6-32.

1

TN N AT T T AN AT A
i WA N NN A N
) % o "-r"f,‘f:fx.l"'ﬁ 2

o,
.l.":‘.lt‘ ALAOMN A

S v o - ,, P LSS X Y % ﬁl
. f-lfff.’ = (s Ny q- 0 h) I-an: % .
" o .-\f\fu--\\l- - . ! ¢ 2z, .; u 2) Hf- .? u-(-f\..-n-\-. » .mf-.{-f.“\“\#\.{% ® nA-&.(-ﬂ-bn-\J\ .v
R . n R . ' .u.-‘-’\ [
. 1 LA ihn o - L. f\f\lﬁ‘.ﬁ“ .-......-... R f..l.-.\ -o.--.to--i ..ﬂ».-.n\>\h-u »
] @
; 2 £
7 - mo
. &~ z
. g :
2 -
£ o
: © 3
& 3
B =
- =9
< @
3 3
[+] -
2 o) S
.I. P w
~ [}
& 2
- [} -
w —
- =]
3 L~ =
% g
. (V]
3 © R
o -m
4 <) 9 @
- — = [\]
E - m 1
[h] A
. S
g g =
: : 3
“ -
s Jut (7]
; & 3
.. - £
d @
~ L3
) reJ
St 2
&2
[} [
K [2
s 3
W £
3 8
3 T w
w .m
L
—
e 3
L] v
>4 b4 £
<€ &=
i
]
B, g
AL BT L 7 L=] LN l-1N by 2o w8 gy S e) AR PR Y X RE LR A AV e\ . S] N8 h NN e

g L oA X A k- . .
. S . ’ - Lo - W o A1 XA

-

- - , ey | " g - T) ¥z, ps : . =y y 4 X
i K i Ay i \‘\-\\\,..“-‘NN- - K _A-\;‘-’flf c\\\\-\.Ass-N)) ",
evﬁ._i\,.\..\ X MN.V Lo el o' < .M... ol .mm.uw.ab P ex..\éw,”.m.\ 00 L J0% eI VN\H..H.,H.aw..rA . Ow”;..e.”\......\..«a L LEEr R Aaaln...uw..ﬁ. \fﬂ... e
g 4, 4 e P L (N e Y] A Sl s -
'-\ . fJ pﬁ’\hh-\fﬁ’\’\, “- --A-l-nu-nn-.. y ¢ \-\.h-ulk LA FALFLS MO DL T o s T dt W P AL o reeT PO et ...q\ Earad f\l ﬂ\-“.n Y |
ry
£
7
y
l-
l&
\ =
v
.\ @ [VSR VY L —
= e
Q
¢, T x <
2=
¢ Z w I .
/ [
. S L0 =& =
p) -
. < «
4 » £ = =
. =] o) .2 . =
) ﬁ (%] = =2 =
<] © £t _
S g €z
3 [¥} - ~ . -
— o - .z
] 1 K —
2 g 3 L=
& c £ x = -
. A 5 3 € 2= e
. [t
] mw t...u...lV... R - |
g dle|] E5E £E 2 <
— e < o &2 T £ =
) -w = IR M w. > = = z z
(3] s = 2 &8 9 3 S~ S
\ - > = vw S5 8 &2 =
b S |~ - > . =2
m Q < 9 g m n = -
¢ = Olml £ a8 = € £ ¥
L. o8 .. ltn ¥ o = ot >
3 Q Z79e¢ e £ E T
& [Zl 8 382 £
< - © |& 0o v ® % £ = %
" -~ -’
v et m_ bt 87 & a z 2z
3 <lol TS558 ;2
= =z ® Z -
o o |2 TIEgFE=E .
[= 1o, (%] [3) = (9 % <> :
A, 2 e ¥ 5 €< 2§
< X = £ 9 = = £
o = v T v " o= g
S o Q& T - .I.H =
3 s s ® 8 £ 2 S
13 -
y = . 2 =2 e £ =
& § 8§ 7 &g =32
% AR
= = v & = ¢ %
Q O — = - s = -
© (773 -] . . e 2
s ~ .
A. - e ™ N O
- R v uw v v P, . ate A »] R . WA p Yy LN LY
PR, S e el el R A A 0t B S Ot QI g Pt

b

A.3.8 Software Product Problem Tables

Table A.3.6-23: Artificial Intelligence Doesn’t Meet the Need

2
&
(@]
4
=
O
w
= E
© 3
€ 2
P,
&5
= 2B
z| E %
& mm
& By
2
gl 51
w| E&
= =
S w3
- L=
Q d.m
© &
-4 w0 >
o g 9
.mm
W.e
-]

1.

capabilities.

6(Requirements), 9(Requirements), 1(Product Assurance).

Overlapping Al References

flflﬂlu)’.\. AL S NN

P A A A N

A.3.6 Software Product Problem Tables :_\-.\::\‘.

Table A.3.6-24: Conventional Software Metrics »2
PROBLEM STATEMENT SOURCE(S) ST

1. Lack of good analytical methods and hard empirical data [a b ¢ d e f s
needed to estimate future costs and mission impacts. :!::0' .:: -
2. No validated models of life cycle costs and productivitiesin |a b ¢ c f -
development and support. N
. . . VRN
3. Unexpected changes in hardwired software during software f \(ﬁ.-
project life cycle. f.a- y
4. Undecided as to whether or not Configuration ltem (C1) or ¢
Computer Program Configuration Item (CPCI) standards
should be applied to firmware. ‘P.:,;::c‘i‘\:c
5. Need to separate and conduct measurement of creativity and f AT ;
implementation. ﬁ&‘ X
6. Contractors are not requested to report detailed software | a '}f
data on any aspect of software acquisition or support.
7. Managers need regularly scheduled updates to show cost and N
schedule states. Sl
schedule states s,,-.\'

L
s

o
A
LA 4

,‘‘ b \’4’

h Y

v

»

i
P

':"i hY
T A

o

4 4
v
[4
;s
£S

s
>
VY

NN
NNy
.’l

[N
r L]

I- L3
AL
l' -

.
»

P A o]
.

?
‘o
)

]
,

o

»
o

Lt s
A
SR
DA A

o
.

-"l-

!
!
4
A

»
I\1

-.\'u"..
e
AN RN
£ B ST
S ANSANVS
’ .).'1‘(“.'
T A e

r .
»

SN
¥

.
'l

a

et
RV ALY
AR
.". »
.“"‘.'

P4 a”
Y VARARY
EAAAA

»
3
v
.3

f
¢
.'-!

Tty T e e N - [y BB, 00,7,) ? <, x
b --..u-br»- 7 X .rn-“!'.- .- .)-N* \\wﬂ u\hl-) . s N)-;tnv X Af r- S u_.un!' > £ .“r...”..-.a\”.o”--u.--).-“ .".-... -«---“J\p-\.(\;- o ﬂ\l-“f\ \-{-\lw\hr\. i \-. -\
PO AR WP . W TN TR NN T e XA
P A AR ’ N [PR At AN Rkl Y 2 o R Yo R N IR /-Vn-ﬁ—-».

ol ol satafala) RO T N paassy Jaals J..-J.- R \-l\ LA A A AN
T’\“\an\-\f\!\-ﬂ ' -\\.-.-A.-b--n... R T e A‘N...A rl--\. \.n-\-ﬁnia- ot .\-- '\.!. PRERRY L .-- -av-- .nc\&c& . :’1} vﬁ. vuno’llhl..fl

S L45%Y : o =

LA AL] -.--r“V-‘-‘f..-w)
"% -

R S S AR

PP AN ..u-..vh\

<, VAP,
- L]
AL \wn;v.a S

\I
N
"
o

o
b5

»

EA,
»
-
-

oy
"
>

X

-
»

NCTOR
_','_x'f_-\.j;.
PATALN

f.-
‘o,
L

LIS
‘_.-\..\J':
T

oy

-
U

A
A\

\I
NN
N

v
s

A.3.6 Software Product Problem Tables
SOURCE(S)

Table A.3.6-25: Artificial [ntelligence Metrics
A-33
-~
~

PROBLEM STATEMENT

™
.
o
>
e

n,
")
S

how high a rating that a system can realisti-
lg
>,

There exists no true scale of measure to tell
cally achieve.

Evaluation of an Al project is difficult.

Overlapping Al References: 4(Management), 1{Acquisition), 2(Acquistion).
~ g
e -,

1

2,
“
-

-
-
N

%

¥
\\"

0

.

'xj\
RS
RALEL R

Iy (] 4 * ' »
‘\E-.‘;\',
N :;.a":\n"

A.3.6 Software Product Problem Tables

Table A.3.6-26: Conventional Software Design

Attributes

PROBLEM STATEMENT

SOURCE(S)

14.
15.

16.

17.
18.

19.

20.

21.

10.
1.
12.
13.

Need a more focused body of literature for software design

as it relates to system computational architecture and per-
formance.

Lack of an understanding of both software design implications
and hardware architecture.

Need for safety features to prevent loss of security informa-
tion.

Design requirements do not exist to ensure the best user sys-
tem interface.

Misunderstandings occur between software and hardware en-
gineers.

Software engineers develop misconceptions of how hardware
performs.

Inadequately designed requirements.

Incorrect assumptions made by software engineers.
Software often lacks modularity resulting in memory waste.
Improper selection of a software language to be used.
Programming style contributes to faulty design.

Poor documentation and conformity to a standard.

Software is often written to fit the outdated hardware system
used.

Too ambiguous in defining objectives.

Monolithic development leads to cost overruns and schedule
delays.

The software life cycle is not really considered when design
decisions are made.

Unclear understanding of design options.

It is often the case that in order to include a new capability
in a system a major software redesign is required.

Premature programming begins causing long-term difficul-
ties.

Bottom-up design is implemented rather than top-down.
Long. costly design phase.

b

(-

Sty smtny wmm pamy miy ey ey

— ey

Continued on the following page

}ﬁ{'
<t

e] W
L & % 3
’ ‘n"l

[1

”,
I

A
5
[d

:

1]

hY
h]

,,.,.

)

7Y,
ﬁf

4,
7’
X

s

1]

hY

. @

)

&;: %,

Ve
%
o

2
-+
"l

=
)‘.ﬂ

d 22
: Ly
t'_,- e KXy

wass
gt_’_-. N

‘
Y

L4
>

.r"d
%
2

/ol
:-»
L

F A
e,
)

)
5

rAL
L
we,

Rl 2% AL
e 'n.“,*. s
..'.
T
P

XN

‘_';.E
Bty
ey

H

"’..“
0
)
54

AL o
]

S

.

AN WU X

a8

LS e 1

o e e - g - L i i
o el P PO U Ahhaiy R
&b o AN iy gy N ey
N.m... Vm.w.\.- d ..fa..Maf o~ A xmm..n-\..\u.u
HE5558N] bird h?a IS TATNA A Lol =Pt Nl
®
&
=
®
=
-
)
g
= A
: 5 .
= : E| -
< 2 1=
.nuu Vb\w.\ v v v v o v
g g 2
~ 2
e T
-
o] bt M < @ =
3 < §5§ 8 g § S
& e s 2 g & 2 g
S © g & 3 T &
i g <5 5 &£ £ 2 =
© 8> ¢ & = g ©
- [—] © L] E .
. s mHV. ® = s © O
< 2 ~]] » X
S - 2 = 2
3 e> & . F = k) g
&= ¢ °© 928 @ g
= £ s = < =
21&l 8 eg> £ § O
2| E® $8<€ T < w»
e 1@ S S e 3 8 5
o = o o E 2 by g e
> |&= g & o 3]
g “ tV-.M mcm um.q &
= o = ‘e
O] 5, &8 mnh 8
clsl 28 5 o8 3
SIE 8§23 $5§ g8 <
@ .f.a GD.
S|F| 82§58 255 2
© % rhd“m.rwanum.h -
< |& v 3085 o .nm.mm S
ol=| §5E3ESES3ET 2
— [- [=] o
2 2 8558 =
T fld"r.lscuros a.
” owafva = .
eh..lclnn -] em
- 3 | o % = =
<] Mmrwmtowus
-~ B w &5 w93 3
S a8 e e 2 05
3992238855
ASREBTZ_RL 8z
88 3 8 & & &

il ol o ol o o b
P4 -) .
A A AK ..._u.w ®

ey
ALY

wr

P XA XA

A e Sl .‘\... T AR ol alaley ..r [R RN
AR (SO, (Y L PR AT TR @l et
S e P A e Ty TN s Ay .,..fsm.e...,\a.sw

-"\\\-v\ﬁ [N N e)

LN N g S S A -..~..---..-J P 2ELPLS v..vulffﬁ.fco.
A A0 i R AL N A AL s.,.n....ma..wm.h...k A A
(Yo
i
<

.r“.' .
N
e
[J
[N OCS,
-. .'
A.3.6 Software Product Problem Tables NN
. s‘;\’:-.
LS
NS
» \,r‘.:\-
Table A.3.6-28: Artificial Intelligence Design Attributes - '
gy [‘;.\
PROBLEM STATEMENT SOURCE(S) .:'_\.-;J,\
_-'\-';
. . . . T
1. Problemns arise in making associative data J ase
. . : , LA
bases (which require functions for adding, re- Ky
moving and fetching data items) efficient and
meaningful.
Al systems are not noted for their speed. m o oL
3. In Al programs, data structures tend to be u
large and complex.
4 Improving and defining descriptions often mo-)
bilizes powerful constraints that force conclu- -:.-::: Y
" sions directly without sophisticated problem ;-::-:
; solving and reasoning mechanisms. Rt
> . . . "“ \
™ 5. Simple search techniques cannot find optimal J e
paths and may be inefficient.)
[6. Difficulties arise when the expert attempts to P s
K map his explanations directly into the formal- \. }':-:
> ism. ;:;:.:: 4
7. There often exists voluminous amounts of in- | 1 r s t u C\-":-:j)
formation in the definition phase of an expert o
) system. :{‘;,'.)
.f 8. Experts often trim their knowledge to fit the t ',':ﬁ': ;
n knowledge structure more conveniently. \:.';::ﬁ-t
9. Knowledge bases exist but little help is avail- | i k MACH
\ N . .. Seae
able for initial design decisions. \
. . MW
o 10. Because knowledge systems are not hierarchi- o -r: N
N) S
N cal, they are difficult to decompose. A
- . - - S N
N Overlapping Al References: 3(Requirements), 4(Requirements), 5(Requirements), 6(Re- -::_.r
N quireme'nt's), Q(Requin.erpents), 4(Management), 1(Acquisition), 3(Acquisition), 2(Transition), G
4(Transition), 6(Transition), 8(Transition), 1(Incentives). o
.
o ._'I_'n'.'
g AR
-' '..-‘.‘f.-
B’ .-. -.Ju'
N ’o"‘n"’l'
] i
- [J
-
A
" A
v S
5 A
' 'a:.%'.'\".
A-36 OGN
o
. . - . e A A o
X X " . Pu V. e L R T S N T AR AR PSSR X L DLt "
:‘i‘;&:":‘?jb&:::,»S:::&:f::&:;;:.-{::;:;i.;i_-_T-\Z:.’-:. R o N N RN SN AT ,-.,'-:-:-‘.g\-i-_s'_-.;_-.-.'«'.*_c-.-_,: v
\. \) ' -.J‘ \ \:;-.--\:\. " ay \:; 'f\-.'.-\.:_\.‘:;-.j-.’ :-,";-.";\"’,\."_-.:w;\'i\ ’\.5-,:;)"".:‘ ‘\ LA AL :,‘-" \;_\,‘n *x,\.’\'_x '.\ - “ -I' ‘.'v_ ~ > "'\. \

i Ag" 2ot Aa e’ v Anv et gt o b iy gt gt Mgt adil i pte gVl gl L AR RS- Rl Sl LA AN RS it Al S Al

S
VNN
A.3.6 Software Product Problem Tables ;-_ N
T
N
A
®
NOCN,
DI,
MAnY
RSO
..’_n\' N
.) rorate
Table A.3.6-29: Conventional Software Documentation Q‘_.-:.r‘
[A
PROBLEM STATEMENT SOURCE(S) s
A
FPt
A
1. Documentation effort is relaxed when schedule slips occur. b d f -':::-‘:_-
Cd o o
2. Documentation is often deleted if funding is reduced. b d f ;.,__Z: .
3. There exists inconsistencies as to what documentation is nec- d e f vt
easary. s, '
. . S) 1
4. Errors occur in the actual production of documents. (DA,
N
5. There exists little or no documentation in key areas of design b d f ‘-}: o
. = 3
and analysis. N
. . . na
6. Inadequate documentation exists resulting in a lack of com- | a f S
plete project history. :,,._:',_-,; :
7. Requirements of information scope, depth, and format are | a ‘_-::‘_-',:::-
usually ignored. AT
8. In contracting for software documentation, there exist prob- | a e .\‘;--:'s:
lems in knowing what to ask for. e ”r"’_‘
9. Nostandard documentation Data Item Description’s (DID’s) | a v
for software. Vo
10. Factors of difficulty with regard to documentation: e -
e
e gystem complexity; h
® project resources; E‘-;
\ e development stage; and ::-::"_\j_
; S
e documentation overlap. NTNENE
-- 'F.-"-'.
11. System interfacing must appear in documentation. e .,
12. Need sufficient inanpower to manage/review the documenta- d e
tion.
13. Anticipated maintenance requirements must be developed. d e
14. Traceability between docuinents must exist. e . .
15. Problem in defining what comprises a hardware intensive ver- e a3
sus soflware intensive application. \"s,::f'
. S
P P
'.:.\:,\:,
Y
o
i ¥
RN
A
A 37 -\- v
()
AN
D
S K R T R R S SRR Sl Sl Tl Al S S N Nl S N NP S A e e B e ST T U LI AN 'IV‘-'\J'\J\
:.-::: :.:::;:.-E;_':::-:._:. :._-':::_..:::’_‘ NN I N ~-"::i:-:'£: ,:::_.:ﬁ:ﬁ:i"ji:f;::‘:}: \:\.F:-::. :\-P:J:.r:f?f:'
B - - oy . bl - > LRSI N ey a ", g -’ R N
e T e e i S s T e At

P mt
AL
h- Pl
f- if\lf.iJ
s,
EY
&
a
l,
L)
L)
1
.
r,
L]
t 3
.
s
Y
4
3
4
.
.i
-yt
.l*.lu oy %

Software Product Problem Tables

A.3.6

Fable A.3.6-30: Artificial Inteliigence Documentation

PROBLEM STATEMENT

|

YL e a0 RN N N Pl S

Yoy Saa

¢ P \5--1-\--,.

. AL b SRR N e o N (N S TN o Al . e d R .
NN r fe Sy . N DA .stra.m_.wn.n... N LTV AR LA RSN

P S AN AT Y " %
LA AN AN G (i’

o (e AN .
B AL R A T T L2 LA A LA ALY) . ot

SOURCE(S)

None Noted

99.

- _—es

- - aLe R . e . PR q et > n = - - atalal ey o *
.QNnvu- TS SS P g 3NS5 AOTAIELISE o RS YNNI TR XL VRPN AP

e

\- 7, \f-

A-38

PGS AN XN R Lo Ll o EES, T, L) SLL -7 y y
\\\\o.))i-*ut.u ..I -& . : fl @2 PN QA .' . -v\ \-- -n‘-\-v» ,v.\\-\\\n-.. (] T
.}\f\l -.w\-. ”\Jﬂ.\f..%f\.%.. lf -‘f -\m I \-- ---\n- s \' A-%.-\--un " ._v -W- ._'. .f f.'.v ’- -—- (I A fu ® ..-J}.:- -Inrln-.'k .--3\ 1\44\-\ -.. s @ _W LY
POCC IR AIIOOION B £ 72) SN R 5..&..&.-..: NS, N S XA TALS X
tedd .S TSNS .-J.l- ‘% L¥ \i \“-\ n--. -.\-\.\.‘-n -\.-. \-\\\u " x il- LA o v W ---u. B ---. e vl S, Rk Ja Y o 3 3
LI LA 2 Pl Wi i o Pt Ta s hlebhbeN ...-f..u-d- LA RN Whn S, ﬁ.-.\..\,.\f\r.ﬂ.n.
'-I
" ®
5 Q
R Py
.3
> b~
2 g
¥ Q
. 3
v. o v — — — ot — — -
Sy ~
R) nm\..
© 5=
= z |~
f = = |0 v
<] s @&
& 3 o 2 2
o L
& g
3 3 g 2 z 5
& = 2 B g «
] c pel o . -
w0 — 2 < H ®0 o
» o o o € ©
Pt o < = ‘=]
© 5 s - 3 § %
* 2 = £ § & &
< 3 £ g & o g : o
% : ¢ 8 £ = 3 i
3 i £ 2 % § _% <
a .
g & 8 £ & E T
- e a0 ° @ m @ -m
s |« S . O - <] 2 &
- b = 2 = K e © ¢
5 |« 5] m © o .9 L ® 5
Slg| 83 233 = 23
.o T nxV > [m = bw -
= = o ® <] > 3 & S c
© S e o 8 o8 - T e
] M o T W Q] bt m
© 325 S e.= S e G
=) == g8 E 2w 3 €0
< |2 x2 5 =PO & E®
o ® 2] >
=2 % - -] 39
2|2 @ > o = & g
o) x M m © - T m m T o
@ |0 m = 2 Q L g . @ -
&= a~ © = .@ 5% e c 2
&>»2 o EZoE &3
L) ” - O 8 m Q n =
—_ T o == S o= w
[u = = L] “ m o [
m W m.m. “n..o rm m. - cm W ‘s
s g -
seofEEEiEict
o [«)
! - o~ o W © ~ o©
rr.‘
o
o

k
o
b

i

TR

o ' 4 ’ 1 g P s taT el
£ .v-w..- s fw...r\n.\f\’. u--.l u-\v @ v
T A A AL A W R N
TR, AANBSA

LA AR A Y

m.\...-.... L O e N

Pl Sl N e e A S N

R.

n—

\.

h-

g

3 .

B M Q)<

; 2 1

0 =

f 5 m

[N fen

_ =

¢ @]

b, 2 |=

- ' ..“,..

- & &

, = S

a .

: : <

o« m —t
® -

; &] =

[l ..w .m m

. <=
B~ ‘5]

] -~ [} T “

. g < |z x

X [P | € (<]

. M [M «

Y =

¢ m & E A

. & s IS M

' - T 7]
A I

4 =

\ < |..m P]

. 2 < |& &
& = =]

i < -l

: ¢ @ 7

: T W B
2 Z | w
< w|.E
(] 5 [=%

. w zla
© T
[} 4
: g&lo
<

A.4 People

A.4 People

A shortage of skilled system engineers, software engineers and managers has surfaced as o result
of the rapid spread of digital technology. Consequently, three problematic areas have manifested
themselves in professional skills, professional availability, and professional incentive which are ex-
amined as separate categories in this section.

A.4.1 Skills

One of the most highly valued and respected skills of an engineer is the ability to properly prepare
software requirements, designs, and to provide adequate support for future modifications to systemns.
For itemized problems see tables A.4.4-33 and A.4.4-34.

A.4.2 Availability

The availability of qualified professionals for software development does not meet the need. For
itemized problems see tables A.4.4-35 and A.4.4-36.

A.4.3 Incentive

Incentive refers to the idea that the software engineering career field should recognize and encourage
skilled professionals through incentives such as better working conditions, educational opportuni-
ties, promotions and salary increases. Along with this concept is the idea that professionals should

be trained in managerial and technical skills. For itemized problems see tables A.4.4-37 and A.1.4-
38.

A.4.4 People Problem Tables

The following tables show the problems which surfaced in each of the People categories.

-

o
A

LA

-
)
Y

-l'l.\."
2
2

.l L
L
EA A N N

A

R
wa
L I)

r
hh N i
N
- "l ’ [} N .
s ¢ .
o e

VA

LS
.l
ov.
LSRN0 T
B o -
.
[A

d
A

S
N4
!

2

h]
Y 5

AT TN

EAP P R N N

Y

h)

f ..-’
:"-'l,:' v
’

ARL)
Pt ’”
. o X Ny
A .'.j.

o
L4
g

'
130

e Oy

o) , , .\\N 2, . s ; ¢ .nsn-:n..‘\nn N ; -1-...,.,1 . . K -“nff.,. N v g g N e o g o
r.f.\..v\vm.....'ﬂ\.\.. A S gl e S B N @ .r\......\..\r\.\..\.. .g -

L4 -.r-.
AL SR @ ¢ &L AL LTS N o
L ISR AR \.&\ Pr o, sy sr O vy @ e e @S ; b
f’-h-ﬂ _r{\J-...\ W.-\...-uv\ %\ R Jh-ﬂ*\-lﬂ -bv-\-\.-!\ \- ..f\un-h'-f\n-\“i\’n--f «r.rcnv-fvf-.ﬂ-.v-f- d LY Y I-(‘-}- .nf LY --n~ AN v.-. oy, ...-. PN <4
\)\-..-v\nh B »-#-. -\\J S e g g n.n\.\.i;\---t-\-vh\- Mv-i--n- W -\, ISR IWAR) -w .--.rnnh-l»ﬁ.ﬂfo n- ‘\f\f\'-l\-.w---v-t-- .}-»-\..-\.r%--n-- PR '-J ", f\ff‘n“ 2
Y o [ENE N N Sl Wl 'l TR AP s v QP 3 0 o | s e LI S -v-m.-PuPntv\-tJ r\-\.\-\.\.l-\nur PEELL n%‘a. :ertti--\-.-‘r-ls W-.\-\-Av-,-‘f.\-'\-\ m~\--.\o»-\--n”---.;”-.-|. r\’\’»\r IWFJ
.
-
L]
L]
II
-
4
L]
ll
.
] e
; }
L] i
7 ! =< 80
3 B
n—
=!
=~ !
’ = ©
-
L] —~
- e d
I 7.
b . -
! = 2
.
g £ T =z :
- 4 = - -
-
B 3 = = .9
s = z = A w-
- c & = = 2
(77 N - =
g = = & 79
. g = 3 T 8§
; £ 5§ =2 ¢ < 3
‘ <= e W 2 A
S £ i £ 3 -2 >
Ele| &2 5 E g &8 v
: Slg| 3 g £3EE <
) a . - - v
¥ = W ' 2 e = 5 t
P. s 15 € s g 2 g
q [1 < - E o o0«
. ol c -~ °© £ v o
4 vl % 828 o= X7
. = = = «
. g <le| & 5 fE:&
: -~ P v p 2 >
2 2B E ¢ 2=<% 2
= @ bt [= 2N %] «
4 B~ < 5 - b - m
3 1| = 2 2S¢
: g ol & T © %22
ot] -~ - Y b
; r = £ 5 =258
K — = n £ g = X
v o T 2 S ggv
d (¥ - E S & 2 ¢
3 o C 5 = c °C &
’ - e £ 5 g & & ¢
p o0 o = @ m n
. ¢ © W O E ® i
. Y -8 5w g o 2
2 P m.u. o = & m o - o
£ 2T o 8 0o bt
- 7. =2 &2 a0 2 Z <
N .
A. — ™ o o an ©

P — S o W S e a

PR A A ,l»..l‘ > 7 s ’ Phtl.i« ,.l. ry .\ g -h \”v\\.\ I S50 .-.c. LI .h---.-.\ ! ‘ ??-w.'- i ' .‘-qq-.
s..x;..r......?h. \“\.J‘ e [J.ﬁ 5 hn.. Y » Va...r...u.ﬁ .M.%.u.‘.ai ..\. DAY LA .\..\....\....\... ‘...” A Ov......u....m..r..fmf\“ .va....r._x.,........\...... L IRNARR A3 !.. A ...ﬁ...”x
S 5SS X AR B O 2 3O P A A T O A ERRREE N A A R N o R R A AR
...f...» .\s\.r LA pEL LSS, LA AU 2 AT SN A - Ch AL LA A N
NN L waly < SANIIGSS ; . 8k R R IR L R A
(AN AR Fv._\w-\..\.\.\.hu Py .W..\.r._ ROCPCE OISR / \..\.rwu...-.\&...m...r.\ IV VA AR A e F-Wrﬁasaﬁfsf.-.. FASOAN M RO)
1
, ®
_ R
" < S
k=]
» T d
. = £
1 M e
_) -
] —
' r m
1 P —_ %]
. @ z g
3 — - ®
e & =)
$ = =
Ry =]
—-—
1 h _— M
, - = |& -
- -
1 4. w2 = P
s < 8 3
A) n n
Q (4]
3 E £
: ®]
- nm..
= o
oo o’ -«
» & I)
: 3 4 =
. e - =
< s |5
- <& m
d 7 &)
_ < |z &
p M o . =
Q2 = S omm |
_ 218l £21.
s .
Flel 25|85
v iZ|s =
a 5=
= 2|53
& R
LY E ot a
. - .m-..nnw m =
E al 3=|= £
3 Q| EE|2=
& - @ —
. =5 0 2lw .
- s % £ o~
o< - o
LEla o
: $o|54
Z ol =
ﬂ =]
. > m
— (@]

(N W

W3

¥

§

R Ao R o7 SR
ANRDNINAY INYNANY- G LI @l
Fg

TLBLENY S Pl el S AL ALs PR, Tt
-..\-&.%- A.-\-n-.-u--- .Nn '3 DL
FRARENS PSS PR
ot
|
w2
e Qo L) L
=2
|®)]
[
o
Z I8
=
= «a
8
w
< m .8
= - .
£ = 8 > |
[] o — > i
3 2 £ 2 |
= 8] Z
. - - (=%
b, =} c [
- w2 Q n -~
. — .- a -
- . a “ w -
- m - et hn..
-« L)
. 5 g B9 = 3
B =} = « z !
g |& o o <
3 > N m —
- e |5 = T
a Q o o £
b O I= o]
2 @ © °© 2
7] b @ n
7 v = s -~ -
. Sl<l °© § &
- @
w. « - |&= 2 c =
2 4 -« | ® - &
-— = NS
) < 12| E£EsF £ g
..] 5] o0 o M ._nn.. MB
1 T 2 [| m.m - L =
- 2 |m (] © g
S = 2 1o 5> ° - £
a [N = rnw - e ® o
— R o - . (3]
-] o, © A o £ o
3 0
; [<) £ o g8 & c
2 = 89 a2 s c
. 1% E © % o
C o= g & 4
: e T 4w ©° > I ¢
1Y -~ o -] g
a, =2 03 =
; © 3T o< o g
; < &« > £ 9 x <
- P o = - O 3
=T 33 & &
2 - CEZc 2 v
: \ :
» — (3] ™M -
: <
e | SADOOTLY Lk iis WYYYYR AT TN TP | RAITRNN EXXARAAN YN SPYY S TP,

PN ANARART N il atata el S Scio el r e Dt Y
L P A A Y » LN. L et PPl E L "
Ot H.‘m........ AU RSN AR e ® S,
Nasasass YU A S R .
t

-y
iy

L)

. - s
BAAMSASNN 485580508 BRI ICIC O Pl

.
&
-
A

.
)
.
>
.
o)
f
P,
£
7
s
4
Lo
=
f"\r
:F
W
A
!&"
LY
Py
v
)
't
S
{~

A Sl Sl

Ve AT,

&

ST
AN
-
>

Y
| Y
-

)
o
o

"~
"
N

A.4.4 People Problem Tables
SOURCE(S)
p
3

(St Yt "ot Sl vl RA AL el el &

)

{H
N
Y
‘

i

Table A.4.4-36: Artificial Intelligence Availability
A
¥
o

PROBLEM STATEMENT
There only exists a limited number of engi-

neers in Al software development.
Overlapping Al References: 5(Requirements), 7(Requirements), 1(Skills).
A
Y

|

o
-l
2o

W
W

; ML NN TRV IOEN
colriE >y Y N W

s O W

I . P, .

x..x......... RPN SRR NoH

_-.-u.-f\... -.s. o4 v, \.\n\\\f\.. -\, ~.-\-r-r Craat

o
>
=
=
@
o
g
—
v
s
a8
2
2
|
g
]
S
g
[
>
g
Q
Q
=
?
-
-
<
2
2
e

)
4
=
=
=
«
[
w
=
[c3]
=
oo]
Q
[+
.

Excellent technical people are promoted out of their fields

into management positions.
Standard three year tour of duty policy exists for Air Force | a

Sellers market exists; high rate of turnover.
Industry outbids the Government for desirable candidates.

Lack of reward for excellence.

2
3.
4
5

A.4.4 People Problem Tables

- 2 A - .

R T Ty e Y
2% Y Y AN 22 W /) AN P K o, P
XA O.S.m”“.v..“h\.. “..uv. b7 R N = e “.wf Q”fufx,.‘“fmfwr..“w..u AN ..s.w.w..wﬁ.....»m O @ [N Mﬂ 72 ®
Wl r\.sx. 7 ! .r.rw.r....._ SHYNEN b P S R L Y e st el nr.w.n\..,...:..., F..\...r....\....... e -.u'
2,208 SIS AV L A RN S s s b0 o A Y I Y AR A AT P IEE,
‘-..- Wb, ereree u.Y. -\-.\V P !\A-.\ P L \I\J\ et e L L Ly PSS, .‘.-ﬂ..v\w .l-f.-ﬁ\..- I\l-- ?\V\‘. r-nufhfhf%«\n.\f\l r-nu.' AR -{\--.\nv\. \u-V y \.v sv
. &
——y
=
L] T
. s
=
. 0
Wy
a
2
N]
, 5
&
. ~—
. g, —_
w v.
v’
& &=
M bt
. - =
v =
< 2

Table A.4.4-38: Artificial Intelligence Incentive

-
R ;i
=2 s <
e e 3
tvm nm
= < :
¢ = © BT
E g = n .20
E= &= - e 2|=e
Z — o 8 Tla
D w oo 9|g
S| 28 2838
[*]
5 ¥ 5 EgglE
= o © 12 owo|Z
] = o = =
< - Mgtv N
£~ - =8
177) o o2 wwm
St
S| 5835 xZls
= o o= eae
= =8¢ @ lig
Q e &8 8 2 = |
R .I-’ax -IA
e 8 930
A mmo Eola
= L > |.=
wmn Eaw|a
c® 3 o05s|®
o ZR28|x
o
) >
- o~ o)

gV BRI

- ot

PSS AT, ol R R AR N A NN g G A AR i it g gl Lo 0/t gt g

Appendix B

Questionnaire

ARTIFICIAL INTELLIGENCE SOFTWARE DEVELOPMENT
CASE STUDY QUESTIONNAIRE

The attached questionnaire has been sent to you by the Software Systems Engineering Directorate
(SSE) of Sanders Associates Inc., a large defense electronics firm located in southern New Hamp-
shire. SSE provides software support to the users of Sanders computing facilities and undertakes a
broad spectrum of software engineering projects.

One such project requires SSE, under contract to Rome Air Development Center', to perform a
study on the acquisition, management, and control of Al software. While the Department of Defense
has established numerous standards, policies, and guidelines for the acquisition and development
of many types of conventional software, no such information exists for Al software. The primary
purpose of this study is to postulate a model for the development of Al software which could
subsequently be used to devise associated policy, standards, and guidelines. One way we propose to
address our contract requirements, is to perform a number of case studies on Al system development.
In this way, we can attempt to ferret out common methodologies and pay particular attention to
those techniques that are considered to be successful. Consequently, the objective of the atiached
questionnaire is to obtain data from sources active in the Al arena to support the development of
a viable model.

The questionnaire is divided into four parts. The first part provides an introduction to the overall
questionnaire by discussing the concept of a software development model. One model typically
used by the Department of Defense is presented pictorially and discussed briefly. The second part
solicits information of a background nature that may be used to weigh, at least in a qualitative
sense, responses to the questions in the remaining two parts. The third part is devoted to technical
issues regarding the overall construction and support of the system. This part is further divided
into five sections. The first section contains general questions pertinent to modeling Al software
development. The remaining four sections parallel, in a broad sense, major activities associated
with conventional software development and field support that, we assume, have counterparts in Al
software development. Finally, the fourth part contains miscellaneous questions whose placement

‘f
[

- N

)

S S
s’t l"

Cd

Y,

\ .' L] ‘
4 %Y ‘-(
XA

N
ol

T
*5:?{,:,
i

e
5%
LA

P

(V'
h)
oo

PSS
. \}\:S

‘;‘;'.r
LS
.

2
Q]

)
"’

-.:;.‘
L %)
K
3%

’

,
.‘_'I‘

. g

o
LA
x

2

la'f

¢
)

-'
v
@
<

" .
&

5"-
[R4

e
o
%

,’e
Ad
(5%
XA,

’N

)

L
)

in one of the sections of Part IIl would have been inappropriately narrow. A%
. ®

It is intended that the response to the questionnaire be devoted to experiences encountered with NENDN,

X one Al system. If you’ve had experience with more than one system, perhaps you could choose the ~ 7~7<7)
. . JSANAN

one that you think best describes the Al software development process. We suspect that when you 7w’y

review the questionnaire you will find that many questions can be answered quite briefly while others NN

. ‘ Cd

will require more lengthy responses. In order to reduce the amount of time you might spend in % *-.\»

' Contract No. F30602-85-C-0254, Technical Contact: Richard Evans, 315-330-3528 PN

e

A

\ f'\ y .

B-1 GO

NN

i A A R e T O G A N N S - ~ s NN
-»:s:-.ix _’\.::"."\;'u_.\:\: s.;-.:,,-.‘.-."-."-."\’-.":x' TN -."'-.':::":\‘:\.':\‘: ARGy xi-\? :":’:’:‘::"\":J’) "':"":"\";"-‘.":":"
R Y o s S NN ENAN B A A LN A N B AN

s L BT A R R S S S i, St S SR L R A O RN, N SN PR TR ,\"\- o \\\" g

\ A R Rl beld f ot e > ey Ca S 1ty Vu W% LY N A A el Al ot AR NN O o N BRI e MU A A

SRLENS
Appendix B Questionnaire C'-Er 2

responding to the more demanding questions, you may attach or reference available documentation w o
where appropriate. We would appreciate any references be as specific as possible. »

We greatly appreciate your important input to this effort and will gladly acknowledge your contri- ;:)' N

bution in our Final Report. Furthermore, we will be happy to share any nonconfidential information ‘\'-":C:_\"')
that we collect from other sources. PN

. S 6N
If you have any questions or comments concerning this questionnaire, please [cel free to contact us SN
as indicated below. e

Again, thank you for your cooperation.

Sandy King '-".,
Sr. Software Engineer '1::..‘ o
603-885-9242

Larry Fry i ‘ o 3
Study Director
603-885-9208

P
o
A
27,

A
[} .bl %
Ny

[

19
f"f
pa

Sanders Associates

Software Systems Engineering
MER24-1283

95 Canal Street ,
Nashua, NH 03061 g

X
Y

19
»

M
(1
1

)
.
%
* x

Al '\J-‘-
LY 13
s
P
-. ..; ", "‘-'N'

L 4
b

225
[y ".

NV e I 4

el

A P g

ORI,

'
E

~|
;'a
1‘4‘:

o
*dtf"-r

A

B-2
. S WPLI Vs Pl % SV Do R I I I NN W LY LT T LT e T T N T
MG MM SO '\.:'-: ."N;-."x"\';&ﬁ-\ﬁ\:\ﬁsin.:-.:-. \'-'.':,\:\:-.'-\';\: :
LA AV, OF AV aNef 0N ,'-'::\ ARSI GELAGAN 0 LR X
A A AT A A YA W A A A G T) Y

.................

7

«r
rd

te e

Appendix B Questionnaire

PART I: INTRODUCTION

Systems developed for the Department of Defense (DOD) are becoming increasingly complex,
requiring more time and a larger budget to complete. From a historical standpoint, DOD experience
indicates a number of cases where the acquisition of software has exceeded the predetermined cost
and schedule. To assure a higher success rate in acquiring systems, the DOD has set several
. objectives. Principle objectives among them are that the contracted system:

o satisfy the needs defined by the DOD, and

e be developed within the allocated budget and schedule.

Consequently, the DOD has mandated that contractors adhere to a methodical engineering ap-

\.:' proach in order to provide visibility and control over the development process. ?\E

:':, The engineering approach mandated by the DOD requires various levels of system and software A

9 definition to occur over time. At the completion of each level of definition the products (i.e. :'r" ‘

‘e documentation or code) associated with that level are frozen in a state such that any future changes ey
must be treated in a formal manner. These baselines, as the DOD calls them, consist of functional,)

Y allocated, and product baselines (see Figure 1). The functional baseline defines requirements for Ny f::::::'_

5 the overall system. The allocated baseline freezes software requirements and the product baseline N

o reflects the “as built” design. A formal review, attended by representatives of the govermnment and 3}

o the contractor, is the vehicle for ascertaining readiness for establishing a baseline. Once established, :-':-’_‘:-f'

B these baselines are under government control and any changes thereto must be agreed to by the h.
government prior to implementation. Representative of the controlled baseline entity is a document -".:Z'-,
in which information appropriate to the baseline is recorded. :‘::

N In addition to the government controlled baselines, the most recently issued DOD software de- :;::)

™ velopment standard, DOD-STD-2167, also requires that the developer, through the derelopmental
configuration, control the design and the code as it evolves. Inherent in this stipulation is the

- requirement to conduct numerous internal reviews which are intended to act as checkpoints for

» determining development progress.

N

' y Because DOD systems exist in a constantly changing environment, planning and designing for \

X change is a high priority requirement within the DOD. Standards such as DOD-STD-2167 address .

3 this requirement by stipulating analysis, design, and coding standards to be adhered to by contrac-

‘_-_: tors. These standards are aimed at producing software that, when fielded, can be easily maintained

and modified.

Because of its research oriented nature, the development of Al software has not reached the maturity

of process/product standardization that conventional software has achieved. The DOD recognizes
. the importance and value of Al software and is concerned that its development be managed and
" controlled in a manner which will provi e visibility into its development. From the perspective of
. the DOD, the desire to acquire a high quality, maintainable product applies equally to Af software
.
¢

as it does to conventional software.

With this background in mind, the questionnaire is oriented towards obtaining data that will
highlight the activities involved in Al software development, the approach taken, and, just as imn-
portantly, the management visibility and contral over the product as it evolves. Although the

-

vP .M\.a................f Slga s an R Jﬁv ; £ o R ‘
” NI [A A ” B o P P NS
Y 5 " ol A9 gl A @' SN
M‘% I.I.* .l- ! ~ ») s d llwf -- -\f\-.v-\(\;f\i ._-\-\n-!- I.---f %y
n A N

NN >
! P g - 5
Yy 7.\...w.:u:.”..u¢“....”m u.“..uase..»\..\eb ...,..\n. S ﬂ..\.w.vr...” A A AAINNOS

2 r i AL a ‘ .-- -- 8 i -n..- . LI
W. (e B AR AR | AR5 LR A A AN x...\....wr-N.WA_. | 2R A
%
N

il £
HIBE
% wM
HIRE
i H f
m mmi -] 4
A3 3 53 (] &4
3 38| ||| i
11 .
mwu 1 2
3| | &% S
. &)
§ L L ¢
il s v £
n.u“- MM w.m <
$ 05 ﬂ
3 a -
€ & i
13 3g R . 5 @
mw ¥ HERRTHIHS: 2
HE . IR A
o] — Q o -ﬂ.
E . g o
2 : . v
: PER R AR E
3 H i R IHIRT
2 E 2
M F 22| (. .
4 sta ia
X g3 $it
-] A “£a
m =
-9
Q,
<

Baselines
Reviews:
Phases
Products

X TEXXS | A] vy 3 -.- l.h..
Pale e » - s A-\\%.*., ﬁ. % St ts x o
;.....H.. ! o vr~..r.\N\.rm..\ o ..H..”...,..”A\.u.“. a\u e, ...x.:..,..... KXW o > @ A
RRRKF Vs SRt A RN N S K A el

onnaire

Appendix B Quest

systems which take three to four years to develop must be measurable in terms of progress and
expectations. To this end, we hope the questions will provide the data to develop models which
accurately represent the technological and management issues involved in Al software development.

tional software development models, the need for managerial insight must be satisfied. For instance,

=
i
z
<
£
=
L5
-
o
@
2]
<
b
a
2
[
©
)
Jua
a
&
=
-
E
o
-
L
=
=
8
123
<
g
[~
- o
L]
g
>
E3
)
E
-
&
o
E
a
2
(]
>
®
<
@
L
]
3
E
—t
<
ot
°
g
a.

TRIT IR, WRKAARNL it AP R A A o

"‘ WXV 1S 'b' At ot Yy b Sl VW Vo WAV 0, TV & e v AR - _".‘. DAAAAAANRSSEE B ""‘”"”" Eadad - .'::J.: '\‘-‘
NN
L r~r~l‘..
(AN N
' °
:.._1'/.:
) Appendix B Questionnaire _'__-.:-_i\.
) A,
v \:'\-:‘u'
| e
: PART II: BACKGROUND NN
. »
The purpose of this part is to identify basic introductory information abont.the subject system. e
) In addition, certain information is requested to help put in proper perspective .I.Iu- responnes to .::::\I
X engineering and management related questions contained in Part 1il of this questionnaire. ’ ..:,
* . 3 3 A
Bl. Please identify the name of the system to which the responses to this questionnaire are
)
Ky applicable. Briefly describe the purpose and nature of the system and how someone may use the
system to solve problems relevant to the system purpose.
1ol B2. Was the source(s) of funding for the project internal, contractual, or a grant? If other, please
: specify.
B3. Was this the first Al project that your company was involved in? If not, how many systems
did the company develop prior to this one?
l'
A

B4. How many engineers were assigned to the project? Of these, how many had Al development
N experience prior to this project?

B5. How long did it take to develop the system (man-months) from problem definition to first
prototype? How much longer (after the first prototype) did it take to field the system? Was the
o schedule predefined either by management, the customer or the amount of funding allocated for

]

s]

o :('.
) e
" M 2 AR
& the entire project? $:$::
! B6. How many engineers assigned to the project had prior experience in the development of RSO

MY
s
XX
[

v conventional software for the Department of Defense? Were military standards dictated on any
; of these projects? To what extent would you say that military standards, or any other standards

. s
. governing the development of conventional software (please identify), influenced the development 4 "
e N
S of the Al system? ‘_\:.__.._- ,
; . . NN
. B7. The success of a system can be measured by many criteria. Some criteria may be: AT
! :*-".':J:'\
¢ demonstrating the feasibility of a new technology, P
RO
. SN
e overall user satisfaction, ’ -:_;:__-.
i o AR
. e significant productivity gains NS
o
To what degree do you consider the system a success for each of the above criteria? For those .:-:.:,',-}
[criteria for which you weren’t successful, is there something you would do differently in your next N)
. e e LR NS,
| endeavor to improve your overall success? If so, what would that be? Are there any other criteria e
y against which you would measure the success of the system? If so, what are they and how did your :.‘_"'_
g systemn fare against these criteria? T '.‘
AN
) ..':'I-_'-f::
~rr e
.{::-‘,j.-"
4 ~ . S
. EATACN
v RSN
o'_."’g "
NCRANAN,
WA,
L] J a
o D
ARG
N«
. RN,
B-6 IAYRY
\ . J

A A AT N e Tt T R T e e L
A
ALY
RN A TR e
A 'y 'y WIS RSN N ARTS

A

P
ANNANER)
[

»
G458

Appendix B Questionnaire

’
¥

L T N BN

"‘.':.'".-‘.
F2 A,

.y

PART III: DEVELOPMENT CYCLE

Tha purpose of this part is to determine the detailed technical and management issues that influ-
enced the scope, development, and acceptance or certification of the system. This part is divided
into five sections: general procedure, requirements definition/analysis, system construction, system
evaluation/validation and field support. Note that the division is arbitrary and does not imply
that Al software should necessarily be developed in a framework consisting of five corresponding
phases. However, the phases do parallel major objectives in developing good conventional software
and may have some applicability, in a broad sense, to the development of good Al software.

P4

i

GENERAL PROCEDURE
GP1. A model for Al software development could consist of the following stages:

e Identification - determining problem characteristics
o Conceptualization - finding concepts to represent knowledge

o Formalization - designing structures to organize knowledge (tool building)

L4

¥
L}

e Implementation - capturing knowledge ::*.f-
oN
e Testing - validating a knowledge base and system behavior ::__:

Please comment on the suitability of the above stages for a high level (i.e., general) Al software
development model. Also, please contrast the above steps with the approach or steps that were
followed in the development of the subject system. Indicate whether the steps were followed in a
sequential manner or iterated upon some number of times. Lastly, please provide a brief description
of any products (i.e. documentation or code) generated as the result of each step.

GP2. Conventional software development efforts typically include review sessions, such as design ':'_'..

reviews and code walkthroughs, to track interim project progress. These review sessions may T :':.:,
be formal (customer attended) or informal (internal staff only). If applicable, please describe any ~ ~.r-wl
review sessions held and/or any documentation produced during the development effort to ascertain - :

progress.

e
P IR
f

REQUIREMENTS DEFINITION/ANALYSIS

RAL. Conventional software development efforts typically begin with a requiremnents analysis phase
to identily and bound the problem at hand. Did you perform a requirements analysis for the subject

A\l ." ‘:
system? o
RAZ. If the answer to RAL is “yes”, proceed to RA3. 1If not, how did you bound the goals of the 2
development effort? _:"
HAL. If the anawer to RAL is “no”, proceed to the next section. Otherwise, describe the activities _ .\‘

associnted with the requirements analysis phase.

- . 3 - Y ’ - . . - v . - - ®, - - ~e ... -.l..u .l.
ota i giia SN SRl R i I B e TS S S e

P2 8)

5 o
AR
X

w

<

5
N

Appendix B Questionnaire

Ay
AN RS

[
L4

~ 3 s ¥ v
Pt e SANA R
')7;"'? 7]
7) o
b ®

1. Were users included in the requirements analysis process? If so, to what extent was their
input useful in defining the system?

A

fy

‘&l'l
o

2. Were any software tools used in the requirements analysis?

Ly
L 4

{‘-

4

AL

3. If documentation was generated, describe it. Was the documentation reviewed for approval?

[y
.'.". 'l&

'.
, I. 1)
o

v

4. Were the requirements frozen at the end of the requirements analysis such that any future
changes had to go through an approval process?

SYSTEM CONSTRUCTION

SCl. In formulating a knowledge base, the knowledge acquisition process may be exercised in a :
number of ways. For example, one approach is for a knowledge engineer to study the domain area T~

.! V’I "I
»

7
r

and then interrogate an expert. The interrogation may be tape recorded to provide a verbatim _-._",{" .
transcript for further reference and review. The information obtained in the interview ma, be OGN

assembled and ordered into subcategories from which a knowledge representation approach can be
determined. Describe the knowledge acquisition process for your project. Include whether or not
the process was documented. If so, was the documentation reviewed for approval? Lastly, what
determined completion of the knowledge acquisition process?

SC2. Some methods of knowledge representation include conceptual dependencies, semantic net-
works, frame based, logic based, and production rule structures. What method(s) was selected for
your system? If applicable, how was the method reviewed and approved? Also, please discuss the
means employed to accommodate ill-defined or incomplete knowledge.

SC3. In a rapidly developing discipline the domain knowledge may be continually increasing. Since
initially formulated, has the size of your knowledge base (number of rules, frames, etc.) expanded?
If it has, was it necessary to obtain approval for each addition to the knowledge base? If so,
describe the approval mechanism. Lastly, was there a point at which it was decided not to include
any additional knowledge in the knowledge base, and was this a managerial or a technical decision?

SC4. The type of knowledge representation method selected often determines the programming
tools used. What tool(s) was selected for inclusion in the subject system? If applicable, include

a description of conventional languages and components used and how they fit into the overall
system.

SC5H. (Expert Systems Only) What dimensions were considered in identifying the “expert” behind

the expert system? Was there any attempt made to verify the accuracy of his or her input prior
to the system validation phase?

SC6. (Expert Systems Only) In developing a knowledge base for an expert system, input from
more than one expert may result in a mixed approach that is not representative of any individual
expert. How many experts had input to your knowledge base? If more than one, how was the
tnformation handled to eliminate conflicting and/or redundant facts and approaches?

SC7. Were users introduced into the development process? If so, to what extent did user partici-
pation influence the evolution of the developing system?

C}v‘:“‘

)

-f"l.)'{.'-’
27
Ay
X
5,

bt Fd
=

e
3

. ..--. L
’
.
-,'l{l,.'ﬂ.

;.o-' YOI VRN ULV TN tarsto 4 ARG RIE hat Aal, S) YuWy L& P AR Mt S A iy .v’.m"ﬁvcﬂfriri"k'\.ﬂ?‘%"{'
I By
d . M
Y ,f-_ '.
Y
- [J
E: Appendix B Questionnaire :-:5'\"?
AT
e 5_‘:-""
iy " ae)
s SC8. Exploratory programming is the conscious intertwining of system design and implementation. % 24xd
. Namely, as the system is implemented, design changes may be warranted. Did your system go i
o through an iterative period of design and implementation changes? If so, what was the magnitude ::Ji"‘

A of the changes and was it necessary to obtain approval prior to implementing each change? If so,
describe the review/approval process.

VAN
§${

7,
SN

SC9. Based on an accepted design, rapid prototyping is an approach used to quickly develop a
working system upon which to build. Was this approach used on the subject system? If so, describe

a the process. If applicable, at what points were the evolving prototypes subject to review? Once -_.‘::\:'.

: approved, was each prototype frozen as a reference point from which successive changes were made? ::-:" ~4
- A YN .‘-.
¥ SC10. Were there any controls placed on the software to track updated versions generated during ::::‘_-".:

i system development? If so, describe the control mechanism. R '1
Jl SC11. A “good” Al system architecture may have the following characteristics: ot
:' E\

. A
{) . ,
D e separate inference engine from knowledge base .':J”‘

e as uniform a knowledge representation as possible tﬂ\. '
o NN TR
! o as simple an inference engine as possible AR
) MALN
~ ‘u
h e overlapping knowledge '-'f':ﬂ'- !
\J\“‘ -, i
: IR
Describe the characteristics of the subject system. To what extent were the architecture character- = @

'.: istics of the subject system influenced by the following domain characteristics: e
! N, ."-"'hiﬁ
\. AN
; :', o size of solution space :'-:\::s

N AT

o reliability of data or knowledge e i
PRV

N e nature of data (dynamic vs static) '.:}_:’:
1 .':\'\
'N o nature of knowledge ;-‘:‘::

n, '-.‘_n- -

N e user interfa:es A

o

. Nl

= L. a0y
- SC12. The following elements may be potential components of an ideal Al system (brief descriptions =37~
. of each element are presented in Attachment 1): AN

" ' ,\:_:.
!': :.:‘:':‘-

e Language Processor

L] ;“-’_‘
- e Knowledge Base e

. ARG

' — Facts ;«.; ‘
! - Rules e

.
: o Justifier RN
AN
: .r:-a\'
N
AN
L
. :f\::‘
I~-'

Appendix B Questionnaire

53
y

o Interpreter
e Scheduler
o Consistency Enforcer

o Communications Handler

Which components does the subject system contain? What factors (e.g. design constraints, do-
main characteristics, cost/schedule constraints, etc) influenced the decision to include or exclude

components? Was the architecture subject to review and approval by managerial and/or technical
associates?

SC13. Please give an indication of the size of the Al system (number of rules in the knowledge
base, lines of code or some other easily understood unit of measure). Identify the division between
Al and conventional software components in addition to the percentage of code dedicated to each
of the components listed below. Add components, if applicable to the subject system.

knowledge base

inference engine

user interface

e support environment

SC14. Software tools are often imperative in Al system development because a small team is
responsible for generating a large amount of code. Describe the software development environment

under which the subject system was developed. If tools were not available, how do you think the
lack of same hindered the project?

SC15. How was the Al software interfaced with conventional software? What problems were noted
in making the interface?

SYSTEM EVALUATION/VALIDATION

SVI1. Please describe your overall approach to evaluating the performance of the subject system.
What type of test documents (e.g. plans, procedures, reports), if any, were written? Were users
involved in the test process? Were test strategies applicable to conventional software such as
multiple test levels (e.g. module test, integration test, program test), branch coverage, boundary

value testing, stress testing, etc, used to test the Al system? If not, describe the strategy, if any,
used to test the system.

SV2. If the knowledge base, inference engine, and/or other components exist as discrete entities

in the subject system, were they tested separately? How did other architectural characteristics
influence the test process?

R S T P Lt B IR
f4
l::: 4: "::‘.ill:':ll _(':" :
" 4 .
e '.-ss.;:‘-:‘ #E,;O

P

—

o

r"r‘.(.:’sl":‘"- ‘\-‘

[N A AR

b % N T Y
® [X 42 X XA

L% 5%) "

XF

;‘- .Vf'VF

< s

-, e F) [

- . L e e e . ..-._-\\._‘--"’.,'._,A_plf."_f\vr.f._._ ¥

A AT AT A AT AT T AT T T A AN N g I R R A A A P AT

~\r,‘$ f\,:;\n.-r\;\ NN A N A T RN) X A AN o DTN /\I\J:__f._-_’\f

oL AL G T R S e b o AT M AR ‘ AN OO B NS
. -\":j\’ \-"\';5"-"'\:;\" AN O N

Ol Cu P e T A T A,

Appendix B Questionnaire

SV3. Is the subject system self-modifying (is it capable of changing static evaluators, internal con-
cept formulations, or modifying its inference engine in response to new data or incorrect reasoning)?
If so, what impact did this characteristic have on your approach to testing? Did you repeat tests
that performed properly prior to the self-modification? If not, how did you know that the modified
software did not impact the performance of the system in a negative way?

SV4. It has been advocated that the evaluation of an Al system should emphasize quality assess-
ment (ie overall user satisfaction) rather than more traditional performance measurements. In one
particular investigation, an interactive evaluation subsystem wa: huilt into an expert system known
as the Automated Academic Advisor’. The purpose of the subsystem was to monitor various pa-
rameters of system operation and to administer interactively questionnaires Lo the user while the
application system was running. The subsystem would statistically analyze responses. Please state
your opinion on this approach to evaluating system performance. Does the subject system contain
such a built-in evaluator (or any other kind of evaluator)?

SV5. What kind of tools (built-in or otherwise) and techniques did you use to evaluate/validate
the Al system?

SV6. When testing the subject system, what criterion did you use to judge whether the system
passed or failed a test? Please elaborate for all levels of test (e.g. for testing a specilic rule and for
testing the system as a whole). What criterion was used to judge that the system was ready for
use?

SV7. In rapid prototyping, the general approach is “build a little, test a little”. If rapid prototyping
was used for the subject system, please describe the method of systemn evaluation. Did the testing
phase become more rigorous as the system matured?

FIELD SUPPORT

The following questions apply only to those systems that are actually being used in the field. If use
of the subject system is limited to a research and development environment, proceed to the next
section.

FS1. Was performance an issue, either in terms of response time or degree of accuracy? If applica-
ble, describe the effort taken to improve system performance and its effect on phases of the project
that had been frozen.

I'S2. Were any enhancements suggested by the users as they learned to work with the system? If
applicable, describe the mechanisin for implementing the suggested changes.

LY
'
*

Y %
"(. L]

’

l'

"y

L ’-l
.

[
'.
1

¢

2 Cercone, N., et al, *Designing and Automating the Quality Assessment of a Knowledge-Based System: The lnitial ®
Antomated Academic Advisor Experience®, IEEE 1984 Workshop On Principlea Of Knowledge-Based Systems, ——
IEEE Catalog Number 84CH2104-8. el

[d
"u

..x..........\.._

(WY
o
y X

x
SLEE

Appendix B Questionnaire

S
.....\\
A

ﬁw
2424

PART IV: MISCELLANEOUS

M1. Lessons learned - Looking back over the entire development cycle of the subject system, are

there any activities that should have been done differently? If so, describe the activities, how they

should have been done, and whether or not the new approach will be used on s future Al system,

> he
w&%ﬁhﬁ;
LR R
O

ding characteristics of the software develop-

bject system that were not covered in your responses to any of

M2. Please provide any additional information regar

ment you consider unique to the su

the preceding questions.

P

YL AYSY

P
* \A-Nl-ﬁl -

N

-
5t

P
P .-fsvﬁ_.

e hﬁv.m..\ i
P

ThLEL 445 T

P s
<0
\-..-J\w 3

AP L FURRT" Il S e i g 0 ¥
" 5%y > [d
z. h.wwx...\. AL

LS]

l‘

*.
£02,272,0070, @

b % 4 -.\f.»-\

reer”

)
4

frrrﬂr.
e A AN

Appendix B Questionnaire

ATTACHMENT 1

GENERAL DEFINITION OF TERMS

Language Processor. A language processor mediates information exchanges between the expert
system and the user by processing questions, commands and volunteered information expressed in
a problem-oriented language.

Knowledge Base. A knowledge base is a repository for rules, facts, and/or information about
the problem to be solved.

o Rules - This part of the knowledge base contains procedural interpretations.

e Facts - This part of the data base contains declarative (i.e., non-procedural) information
pertinent to the expert system domain.

Justifier. A justifier explains to the user why certain conclusions were reached and why others
were not.

Interpreter. An interpreter executes the chosen agenda item by applying the corresponding
knowledge base rule.

Scheduler. A scheduler, which may contain a fair amount of knowledge in its own right, controls
the agenda by determining which pending action should be executed next.

Consistency Enforcer. A consistency enforcer attempts to maintain a uniform representation
of the evolving solution by applying some quantitative scheme to determine the degree of beliefl in
each decision.

Communications Handler. A communications handler manages the interfaces between compo-
nents in a hybrid or multi-component system (e.g. blackboard).

'y
)

A K,
Y

::
P
%

2ol
e

'.'.,1
A ®
Fae XA

AX XS

XK
e A
b >

}:::
l‘\l

2
By Ny
P }‘

oY Jo T e 3
Pl s

-.? LY

) 't{v" -

'-"_'f '-:}

v
Jx

-
.
W
"Lt e
.
SN
P
B

.
c .

...
O,
o 'l ‘l

N

“y
48

ye

ﬂ.

‘,
)
i

EEo0
(A fé .

"
&
5

>,
R
X

';g!-

L T AN

.‘-'
]

1]
V'

e

h i)
LS ':’

..l '.I ..'
o

P#

LS

2
‘
4
)

lo’ ‘;&' LN

2

I s 2 2

ALY

SR I

L LSl el b

- W dde (O SR W) o0 oW S N BN L T L N R UL SR R PR AR L I O Y AL.w_o W

Appendix C

Case Summaries

C.1 ARINC Summary

The ARINC System Testablility and Maintenance Program (STAMP), allows an engineer to analyze
a system’s testability for field maintenance operations. The system will recommend design changes,
and provide fault isolation strategies for manual, semi-automatic or automatic field fault isolation.

The development team was comprised of four to five engineers, with no more than three computer
programmers assigned at any one time. Two of the engineers had previous Al experience. Three
of the project personnel had DOD software development experience. Nonetheless, only internal
standards were used during the prototype and development phases.

STAMP was funded as an IR&D project. The initial prototype was released within 6 months
followed by a field model which was developed within two years. The system’s success is based on
the fact that STAMP demonstrated the possiblity of a new technology and significantly increased
productivity by automating a manual process. STAMP is currently an established product at
ARINC.

There was no requirements analysis for the prototype. However, a requirements analysis was per-
formed for the rehosted version of STAMP from an Apple to the HP-1000 operating systein. The
only formal software development procedures followed for the initial prototype were during prob-
lem formulation which encompassed some of the ideas behind identification (determining problem
characteristics), conceptualization (finding concepts to represent knowledge) and formalization (de-
signing structures to organize knowledge, i.e., tool building). Throughout the prototype phase, the
capability of the system was continually assessed. During development of the rehosted version
of STAMP, more rigid standards were followed. More attention was placed on finding ways to
represent knowledge and formalisms were developed. Extensive documentation was required.

The knowledge acquisition is inherent to STAMP. A new knowledge base is implemented by a
testing expert with each new use of the tool.

STAMP is comprised of the following components: a knowledge base, an interpreter, a consis-
tency enforcer and a compiler. Tools used during development encompassed a Fortran 77 com-
piler /debugger and the HP-1000 operating system.

The STAMP system is written as conventional software in Fortran 77. The system feasibility was
tested by individuals who checked code at the module and integration level. Users were allowed a
two month trial period to shake out report problems with the system. A user conference was then
held to determine final action itemns.

Overall, the system underwent five major architectural changes which allowed for incremental

testing and iterative system development. Some of the lessons learned were Lo develop a sumple,
uaable prototype excluding bells and whistles; document early and {requently; free the experts from

<

)
e

[

v f$;$f5rst‘
Y 5%

SR

'n')‘l'
)
&? 0', .-.-'/

7,
Yy,
=y

Yy
s
h 3

PO N B B P
. 5
.::.v"f_‘.','
e

fod

oy |
|
%

<5
77

7

v
!
P4
\)
e P~ S e

A
e
‘40

[d

ﬁl‘
<

b{a X

"'.:ﬂ.'
o

,I "
i,
<l
e

XA
‘l

NS

L
.
.
o .
e)
v _* 4
.
L K K L

v
a8
a

-,
(2

~ b
N
Mo)

.
n
.

~

5 .
") J s.' “’.: l- .s' .
<r’i! .:4.?.’& O .,
KA A X AL LIRS
. N

‘I

)

-) . . 0
3 SR b Rt Ap® g JI" Su W™ T A0t g9 T W T [Sal St et g Ao g paliieny! AaYAapie e po phe gt

Computer Services had previously built over 30 prototype Al systems. In terms of demonstrating
the feasibility of a new technology, the system is a success. Overall user satisfaction and significant

RAAAN)
A
\:-.:-.:
Nava
@
ASATN
C.2 Boeing Computer Services Summary :-.»‘: ‘
iy
SN
. \}\ :’\
administrative burdens to allow them the time and opportunity to develop ideas; and encourage PN
creativity during the prototyping stage. .. :‘.-
. ." -
“E’(?;tj;
. . AN
C.2 Boeing Computer Services Summary ot
VY
Boeing Computer Services reported on a Strategic Force Management Decision Aid which is a -
knowledge-based replanner. The inputs to the system are: a description of a previously created RO
plan for the employment of strategic forces, and a description of an event which would require _:.:_
alteration to the plan. The system then determines a suitable modification to the plan which is RO
presented to the user for review and approval. RN,
The project was developed with internal funds by one engineer with previous Al experience. The ; ﬂ,..‘
first prototype was developed in six man-months, and the system is not currently fielded. Boeing o M
,..'p".“-'!

4
P

Ve,
productivity gains were also substantial. b i
The model used to develop the Strategic Force Management Decision Aid consisted of the following z;:;.-v’_:
steps: :_, I;
NN
e
e ELICITATION - Knowledge is acquired from information sources to produce an information -::-C"_-.E
base. AN
[2% —'!:
e ANALYSIS - The information base is analyzed and structured to produce a knowledge base. . ::.:}\
AN
e TESTING - The knowledge base content is tested to produce a case base. :?._-f'.:f.\'

o REFINING - The case base is refined to produce an expert knowledge base.

e
o
’& b

.

o COMBINING - Multiple expert knowledge bases in the same or related problem domains are :‘.’;\. by
combined to form a knowledge network. :'-t::-::::
TN
e TESTING - The contents of the knowledge network is tested to produce a knowledge network :.:r::;:.:
case base. .:_:_‘:.J_:.'
e TAILORING - The knowledge network case base is tailored to the requirements of the specific PR
customer to produce a delivered knowledge based system. oS
[_-\Jl." \
A
e RECORDING - The delivered knowledge based system may incorporate recording of infor- t:::\"‘__ c
mation that is used as an information source for further elicitation. bt
bad —'!1
. . . . " -
These steps were iterated several times, with feedback from subsequent steps used to revise the WA
results of previous steps. Three review sessions with the ‘customer’ were held which included "::':':
demonstrations of the current level of system functionality and an exchange of information, ideas :'.:-:_'-;
and concepts. Yerere
A requirements analysis phase was performed which consisted of discussion sessions with the ‘cus- ®

.
v
"
AL

tomer’ to identify types of problems requiring a solution which uses the replan approach. For each

Q
(]

t P —_—
Y AR
> S % Wy
" é"s ~',',(&{

" .$ P f.:'-

[
.
‘s

lf
b3

PRk
o

IO

,'\v
S

K
.

,'n
£,
'y .
[/

L

a ™ s n avP LW g w g Wye A fa g A NI S, Yl el B ek el oy D SR A AT N I A 0 SO SN Mt gy st JRa e > B* ot g b g -‘\
-.::\"\':\
AL YA
AR
e
C.3 Boeing Military Airplane Company Sununary F‘Q-r\ J
oy
P
s : . : st
problem identified, a suitable problem solving methodology was determined. The set of problems ot
and their corresponding solution methodologies were used as a definition of requirements. User »
input to this process was considered very uselul. F'}-"‘.;
't
Four experts were involved in the process of knowledge acquisition which consisted of informal o ‘\
interviews. A negotiation process was used to resolve any differences. The experts were chosen i ft."\-;
based on their years of experience and the community acknowledgement of the person’s status Sy
as an expert. The Knowledge Engineer was also an expert in the field and provided additional
verification of the experts accuracy. A frame based, logic based and production rule representation m::;
. . » g
was used to encode the knowledge. Iil-defined and incomplete knowledge is handled through the N, ‘gﬁ
impiementation of alternate paths through the production rules in a manner similar to default logic. ::N o '::
The tool KEE, operating on a Texas Instruments Explorer Lisp Machine was used to develop the ;5-.'3,-, b
system. A rapid prototyping approach was also used in the development process. The evolving ‘
prototype was subject to review on a continuous basis informally, and formally at about two-month :; *
intervals. There was no approval necessary for design changes, and no controls were used to track "."%-Q)
the updated versions of the system. &%’;
e
The components of the system include: g!‘x;'.\' N
e
E‘;"?‘f'
o Language Processor S
'_:f‘.:l’zi :
¢ Knowledge Base L,
AN
: e
o Justifier LT RTAT
o Interpreter e
.{'\..' v
AN
e Consistency Enforcer ey
A
. . el
In terms of size, the knowledge base consisted of 50 productions rules, approximately 45 frames used Ry
as templates, and 8000 lines of LISP code. During execution of a typical scenario, the knowledge EACHI
base grows to 300 or more frames and several hundred logic based facts. _"::_.:; ~)
CAGA A
A set of test scenarios was used to validate the system. No formal test plans were developed. The :-'_:: N;:
success criterion used was to examine the plan generated by the system and determine il it would :-':f::-;"
be considered an acceptable plan by an expert. - ’.
NSy
ot
ey . -":'.‘: o
C.3 Boeing Military Airplane Company Summary Ry
RS
PN
The system reported on by the Boeing Military Airplane Company in Wichita, Kansas, is an ‘."'\'."
Internal Research and Development (IR&D) project called AT for Automatic Target Recognition A
(ATR). The purpose of the system is Lo reduce problems in the modern battleficld environment J':"f.::’:"
. . L T R . ,- -, -
by improving present target recogunizers through Al techniques. This long terny research project is PN
currently in the feasibility demonstration phase. SN
‘.' L) _l“
The Boeing ATR software development team included one lead engineer with approximately twelve °
years of conventional software research, development and additional personnel knowledgeable in 2 ‘:\
.r::w;‘./::
Ly~
gy
C-3 FF ol e
AN GuX
e
"‘...'\'a"!,"‘."\‘v-'v-------r---'-.--...... g e - e ae . . __“'.-la.l-
B A A NI
S Y S - Y s e St YL AN A TR AN A A SRR U SN N ..
R e e Oy YA g Ao

ARG LN SO N g
= - r

.

-,

L
el C.3 Boeing Military Airplane Company Summary _.r‘*‘
g i i ing i i i had al leted an in-house Al
o] various areas including image processing. The lead engineer also completed an K

Associate Training course. All involved personnel had considerable experience with DOD .un(! com- e
mercial software development. Standards for conventional software development had a significant :;.::':-
influence on the Al software. ’::-'
The general process used in the development of ATR to date consisted of the following phases: _-_;.-'
e Identification - a study was undertaken to determine military product areas that were auitable
for improvement via Al technology (i.e., ATR/image understanding)

e Conceptualization - conceptualization of problem characteriatics derived throughout the Tden

tification phase into system capabilities (i.c., dealing with sensor fusion capability, incomplete
or uncertain data)

e Formalization - considered a particularly valuable phase in that the expert system development
tool was selected which determined the form of knowledge representation for the ATR system

e Implementation - gathering knowledge via literature surveys with minimal expert consultation

<

e Testing - validating the knowledge base and system behavior (i.e., demonstrating system
concepts)

7

-
Y,
-

7

%
X

Each of the above phases is considered appropriate for the development of an Al system. How-
ever, it was perceived that as additional information regarding the problem was encountered, an
iterative phase which produced a new prototype model for each reiteration was necessary to the

development of the ATR software. The cyclic phase deviates from DOD and company standards
in that requirements are not fixed.

a
ry
L2

o
- l" .J.
e

i
oy
Pd
LYY

Ay
535

Knowledge acquisition, which is never considered complete, consisted of a literature survey in the
areas of image understanding. Documentation was prepared with known techniques, and algorithms
for image understanding were reviewed by internal company personnel.

The knowledge representation method of frames and rules was determined by the type of data
and available tools. The knowledge base continues to expand with informal reviews and a formal

approval process. Tools used in developing the software were Knowledge Craft (in particular OPS-5)
W and LISP.

The major components of the system: a knowledge base, justifier and an inference engine, were
largely determined by cost and schedule constraints. In addition, the architectural components
were influenced by the tools available and were subject to review and approval.

The ATR system has not reached a stage in which extensive project performance can be evaluated.
As the system reaches completion, and is ready for deployment, user satisfaction will be examined
as well as productivity. The feasibility of the system is determined by the ability to demonstrate
conceplts as in the original proposal and the evolving concept definition. Every rule was triggered
and fired. However, not every combination was tested. The system passed testing when a few
image inputs produced the appropriate output result. In addition, the user interface is continually

tested. As cach prototype was released, the main testing target concentrated on those areas where
changes had been made.

’ " T T T T L T L LR RSt N ST A g 3
Wy B Lt L T i T e o o N i e S e Y i A T N R N AL L SO
LGSR LIEE SA ARG Y 1'*".\\'.'1\.;'.:‘.]':}_._‘nf_‘-'\q": ,}__“\J'.. AN -I‘.‘-’.‘v.j‘._t NG OO NV A N
LoV 2 it A LS A S A "
-‘:\':_\. At f\';\ = B A o AN RN " N NN .-"
AR S SATAT B S It Pk a0 : . ;
PG LLLEA O L
WAL N)

PR

PP P W A P Wa B WL PN RN L U R R " -

C.4 Brattle Research Corporation Summary

Overall, the ATR system, while not an ezpert system in the classic sense, has a domain which
is considered much more complex than the typical expert system. As a research project, the
reliance on literature that influences and causes continual changes Lo the requirements, results i an
iterative process through all the development phases and ends in a new prototype. ‘The flexibility
of a research area such as the ATR would suffer without the ability to rework requirements to
accomodate important data or changes to information.

C.4 Brattle Research Corporation Summary

Using both venture and contract funding, Brattle Research Corporation is building a generalized
text extraction system focusing on business information. The sources of business information are
online database services such as Dow Jones News/Retrieval and wire services such as Businesswire
and PR-Newswire. The system has two basic functions: topic recognition/retrieval and extraction.
The topic recognition side of the system has gone through a feasibility study, several prototypes and
is being appled in staff study contracts. In terms of breadth and depth of retrieval, the intelligent
topic recognition aspect has been found to be much more accurate than currently available keyword
search techniques.

Several extraction applications have been tested, and a general extraction utility is now in the
engineering design phase. User interface issues are still in a very early stage.

The development environment for the system is based on the Symbolics 3600 using Lisp. For
portability reasons, Brattle Research is moving from Zeta-Lisp to Common Lisp. The company
has built its own database management system, information retrieval language, and their own text
analysis tools. The tools were a tremendous aid in facilitating rapid prototyping and conceptual
breadboarding.

Brattle Research employs a relatively organized development strategy: define overall project struc-
ture, identify milestones and allocate budget vs. phase. Documentation includes conceptual systemn
specifications and design documents which contain timetables and budgets. All documentation re-
ceives both managerial and technical review with feedback in terms of consensus rather than strict
approval/disapproval. Weak areas identified by the review process were focal points during the
prototyping phase.

The project team currently consists of seven people all with more than seven years experience
the Al fickd. 'The overall projected team size is estimated at twelve.

For each topic, the knowledge acquisition process is based on working with someone who is familiar
with the way a topic is deseribed in the literature. The knowledge engineer works to deduce
a sel of patterns that describes the topic. The knowledge base is then comprised of linguistic
patierns associated with particular topics. The inference mechanisin includes a variety of techniques
collectively described as a simple form of discourse analysis. Specific methods include pattern
recognition (including some signal processing strategies - i.e. treat text as a stream of symbols),
and linguistic mechanisms such as chart parsing, categorization of syntactic elemnents and treatment
of context-free grammars.

In terms of user involvement, existing customers have been providing feedback on the prototypes.

C-5
'A*'\."-\.'I\J'-.'\.'\"\-'V'\."J"\."."..' S PR R S S o Sl N N Tl S S Tl T sl S PR A T R T S N . O e Y
o P s Y N A N AL A NN A P AR AR T N I A S A AT S A A AN A g
Mo LS S LA R R Syl Pl S N S gl A SN S S R S WS BN S S L S AL XS A SO S S S
e P o LY J'_.P».r_\f\:._f,\f N N o A A A A S AN
" . T A it e e g E N N L R M AT RN N A
B ACACACN YN LY b X N N A A W Y A A A A T A A S A A v S S S A S i e

'_
5 %
P s

NN
¥

55
2

:

L)
[4
Y

v P ;
LI
)

o L oL
T e T S
! Sy s
X

]
13K

5
"n’
b

4
(.I&

[

_y.
NEA

AR
‘I‘r
LY
]

AR
(A
/!

vy
R4

5

Huh)
g

Ay

a
v gl

LaAT
2
.t S

5

ey
¢

!
’
“a
(3 4
e

7

.,..’,
AP
Y

'y 4
we

4 % %W
v

iyt
e

P .")J'

»

&‘K ‘l

[
h)
.’?l(l’

e
P

L

h]

o

«

Susgl,

Y
.‘;_

L4

3
n

A}

¥4

#
Yy A

o %

R AT T

i pJ
.“ q;‘.

L]
XA

PN YL

»

{?:II
i)

[]

Y 5
hd

X

e

“

R AP

,.

v %
O]
ne WY

P
% NN

+
s

A)
X

‘)'“-
I

Yoy

PN,

'

I
I MO, o
NS NN

s R, B
ot A aRe A e A At i et S AR A A AT R

C.5 Carncgie Group Inc. Summary

Before releasing its product, Brattle Research plans to form a scientific advisory board to comment
on the system.

Brattle uses Symbolics' configuration management system augmented with its own code to control
software distribution. One of the Symbolics machines is a dedicated file server which collects all
incoming information in a central database repository.

Test data, which consumes 70 megabytes of memory, is based on articles from The Wall Street
Journal, Electronics magazine, PR-Newswire, etc. To date, the testing criteria has been absolute
accuracy. Both regression analysis and blind tests, i.e. - test sets that haven’t been processed
before - have been used.

The system contains code to automatically compile the abstract descriptions of grammars and
documents into machine code for quickly searching text.

C.5 Carnegie Group Inc. Summary

The Carnegie Group Inc. reported on the DISPATCHER System which monitors and controls a

factory Hoor Automated Materials Handling System. The system, a contractual project, took thirty- o
six man-months to deliver. The prototype release took twenty-one man-months. The system’s .::.';'
success is based upon the product’s feasibility, user satisfaction and productivity gains. "f:.::'::
I'-".’
The developinent team consisted of three engineers of which two had prior Al software development A
experience. None of the engineers had any exposure to DOD software development standards. .. '_"
The general development process for the DISPATCHER system consisted of the following standard '-.f
oo
phases: oo
g
L] ’\,

! .

o Identification - determining problem characteristics;

Conceptualization - finding concepts to represent knowledge;

Formalization - designing structures to organize knowledge (tool building);

Implementation - encoding knowledge; and

Testing - validating a knowledge base and system behavior.

However, the development process did deviate from the above methodology in two ways. First,
knowledge acquisition was an additional phase that began after identification and before concep-
tualization. Secondly, the DISPATCHER System was developed incrementally which involved
stepping through cach phase iteratively until the system was sufficiently refined. The product was
continuously updated up to and after the final installation.

Althougl it appears that a requirements analysis was not performed, a specification document was
produced. The development effort was bounded by the document and by consultation with the
purchaser. After installation the development was bounded by negotiation between the vendor and
purchaser.

] '-’1[',":).-

<
I NACO
J&%ﬂ;‘ﬁu

Y W W K

L e an an sis o

o e T A e T T e LY

L ol o o

O LG R bg g N, KT 4200 d S AN oA, o DAL O A A AN AN

C.68 Digital Equipment Corporation Sununary

Knowledge acquisition consisted of information obtained from the specification documentation and
from informal contact with the intended users. No domain experts were available for consultation
on the domain.

The DISPATCHER System is comprised of the following components: a separate rule and fact
knowledge base, an inference engine and a communications handler. Tools used during development
included the OPS5 and a code-generator for external database routine. The use of OPS5 mandated
separate fact and rule knowledge bases while domain considerations required a communications

handler.

The DISPATCHER System’s functionality was tested by the user. A simulation tool was built
as a means by which the major system with which DISPATCHER communicates could be tested.
Testing was considered complete on the basis of casual and random tests of the system functionality.

Overall, response time and accuracy were main concerns throughout the development effort. Users
provided continuous functionality improvement suggestions to the engineers who attempted to
incorporate their ideas. A recommendation to commit the user to a more detailed specification of
the systern was made. Also, the system architecture could have been more carefully defined and
reviewed at an earlier stage in the system development.

C.6 Digital Equipment Corporation Summary

Digital Equipment Corporation (DEC) reported on XCON, an expert system that configures DEC
computer systems. Specifically, XCON accepts a list of items from a customer order, configures
them into a system, notes additions/deletions made,and prints out a set of detailed diagrams
depicting the spatial relationships amongst the components. With the automation of a {ormerly
manual task, XCON has decreased the number of costly configuration errors and significantly
increased customer order processing speed.

The development of XCON began in late 1978 at Carnegie-Mellon University (CMU) where it was
known as the R1 system. In early 1980, it was installed at the first DEC plant and used on a daily
basis. By January 1981, DEC no longer required assistance from CMU in terms of maintaining
and developing XCON. Since that time, XCON has become a mature system and is currently in
the “production mode” phase.

I is dilticult Lo discuss XCON without mention of the adjunct expert system XSEL (expert <elling
tool). By submitting orders to XCON, XSEL helps the DEC sales personnel interactively configure
computer systems to prepare accurate quotes and match specific products to customer needs. XSEL
and NCON share the same knowledge base and together contain more than 16,000 rules Because
the knowledge base s so very dynamic, (i.e. new components are frequently introduced existing
components are often modified), an upgraded version of XSEL NCON is released quarterly. Over
the past few years, DEC has adopted a formal release procedure w hich consists of the following

lonr phases

o ’lanning;

e Development;

Ty

Y
)
e s

7,

.,\51_
‘l‘
L

‘siv g
o

L4

',
Sy

4

‘.
‘l
." '?',\
2 ORS00,

?’{':;:';’{';{f‘l
o sia ey
"?{' A

e,

i-"-
R

s

LN
5%

»

o

4,,
N
X

.

T NS
:1?1:'!' ’ I.:i
L I §
20 2277
[
¥ ";*.l".' 7

e
P4
Y

’,

o

L] o
YN
ARSI

s

e e

‘s %o

E AR
.

1

Y

A 'y et St

‘l
)
B

.4
e

.(

PN

.I

o 54

e
Tl

A
%
ahax

.
>
‘ -

»

;.

)
1]

A

&
s,

oy
LI}
"
)
"
:]

""
4 ./

.
z

P4
Y

i
S
b

%

C.7 Expert Technologies, Inc. Sumunary

e System Quality Review (SQR); and

e Release.

The procedure is iterative from Planning throvgh SQR. In the Planning phase, the workload is
prioritized, checks are made in the OPS5 code for dependency levels and interim target dates
established as a function of the scheduled release date.

In the development phase, knowledge acquisition occupies a large portion of the effort. Muitiple
experts are involved for each new product. Technical design reviews are held at the team level and
implementation of the changes within the nine VAX cluster environment occurs. Correctness is
verified using several internally developed tools which perform checks on such things as rule syntax
and database entries. The VMS configuration management system (CMS) is used to control all

source filea. Testing on the changes made (similar to unit testing) is also performed during this
phase.

In the SQR phase, a project test plan is established and executed against. a large set (> 1000) of
hypothesized customer orders. The testing criteria is wholly qualitative, namely, if there are no
major problems that are foreseen to adversely impact the business, the new version of the system
is approved. Following a successful SQR, the Release phase begins. The target DEC facilities
receive a new tape of XSEL/XCON, an installation checklist, an installation systems management

guide, an on-line summary of new parts and system functionality and, if necessary, a summary of
significant problems yet to be resolved.

The project team currently consists of 35 staff divided into the {ollowing groups:

Administration (3 people);

User Support (5 people);

L4

Technical Support - (6 people); and

Knowledge Enginecring (21 people).

The Technical Support team deals with the non-OPS5 code - there are 5 conventional languages
that comprise the syster as well as many databases. The Knowledge Engineering staff is typically
sub-divided into 2-3 teams whose responsibility is knowledge acquisition and representation, OPS5
coding, and testing. The project is run using a management team concept wherein the project
manager makes very few decisions without consulting pertinent team members.

C.7 Expert Technologies, Inc. Summary

Expert Technologies, Inc. (ETI) reported on their PEGASYS system which is an expert system
for the automatic pagination of yellow page directories. The system has thrce modes of operation:
batch, review, and development. In the batch mode, PEGASYS provides automatic pagination
using heuristics. In the review mode, the user can review the system’s pagination for quality

’

’
h
’

P S]

h) 2 ¥

'r",f-’;'l'"
(4 k"
P XS

- -
.
i
[

A

. LSS

."z‘i ABANIY Y
4y

.
y

Ly
oy
'I "

s
x
£y

120,

",.".J
L)

[N _'- Y
h]

y ! N ‘.&{ A5
_'l ,,'". PP
o w p

v
¢

L}
."- bl

Lt

P
7,
LA]

NN
)
X

‘s
Y

o

-

: N
ll'/.
[

”-

P

»

PR
:,’-,’1. Y5

o

Ca B0

S,
iy

AT
g

b »

"I"Is;'.
[N N Y

)
Lo ST

&
PR

»

5

o
R

Id
[

1" v

kK

AL
L4

B‘

?

\l

A
JON

C.7 Expert Technologies, Inc. Sminmary

] '\-
‘..

LN

LI
O
et

L)
Rl

N
A
.
i
h
N
‘_I
P-
’l

L A

1
[]

»
,\

)
S
»

control and interactively make corrections. The corrections can be made manually - graphics
object composition, or they can be inputted into the knowledge base - changing/refining a rule to
yield better pages. In the development mode, the user has the ability to design new rule hases and
examine the resulting new products.

<
N

L]
X
-X 4

N
L IR}

Y &
P4

[N
»,
(XA

>, 2

h)

PEGASYS was an internally funded project and ETI's first Al systemn. The development team
consisted of 7 to 8 engineers, all with LISP experience. Three members of the teant also had prior
Al experience.

“_v_ v
'.r:.-"
o

A\
=

]

[

"

4

e
Seven of the team members developed the first two prototypes. The first one was developed in one ::?.:_::';
month and the second in two months. Eight team members developed the third prototype and the ::j:l::\.ﬁ
deliverable system. Each took three months to develop. The PEGASYS system was delivered in BAEAY
69 man-months, three months ahead of schedule. NP

:
7ie

PEGASYS is considered a success in terms of demonstrating the feasibility of a new technology and

\l

overall user satisfaction. The system’s most significant success lies in its flexibility which results in p :ﬁ'\{
a system that can be extended and maintained easily. \‘:{“tb
L1 - N

1Y > \

A requirements analysis phase was performed which included user input. The tools KEE and e
Knowledge Craft, along with Xerox machines and Tl Explorers were utilized in this phase. A °
functional specification was generated which described 90% of the eventual system’s functionality. LA

_1.
.

The requirements were frozen at the end of this phase.

Knowledge acquisition was achieved through verbal communication between the domain experts
and the knowledge engineers. Extensive documentation and prototyping was performed during

this process. The documentation was reviewed by the senior design engineer for approval, and)
the prototypes were integrated into the system upon approval. The choice of experts was obvious :::::::
as there are only a few people who have special pagination expertise. Three experts were used ::\:'Mf.‘
and knowledge from either one was encoded and results approved by the other two. This process .:‘:,::'_
allowed for complete conflict resolution. Ny
YNy
The knowledge representation method consists of a semantic network of frames. This method was -
chosen because of the close match it provided with the domain knowledge. Incomplete knowledge : VA
was encoded procedurally. The knowledge base expanded during the development process with X
approval by 2 senior engineers. PEGASYS allows for extension of its knowledge base on an as- :_;:::j
required basis. : .:.::r.

There were three major break points during the development process where new designs were
encoded. This resulted in a complete reimplementation of the system at the end of the second

break point. Approval for these changes came from the project manager and two sentor knowledge o
engineers. An in-house proprietary configuration management approach was used to track updated o
versions of the system during developiment. -
. L]

The PEGASYS system has the following characteristics: AT
NI

‘ -\ I-‘ -

. . . 0'..I{

e A simple inference engine e
EAAC

e Knowledge encoded in terms of semantic primitives PEXe g

e Meta-rules encoded as “process” rules (procedures and frames/semantic objects)

N IR TR A S S RV X!

C.8 Frey Associates, Inc. Summary

e Consistency Enforcer

The architecture was reviewed and approved by top Al specialists in industry and academia. The
user interface was done conventionally, and was one of the two largest parts of the system.

Development tools were used in building the prototypes. The tools contributed to development

frustrations because of the expertise of the Al programmers. Consequently, development was
moved entirely to LISP programming.

An acceptance test plan (ATP) for the system was written before the start of the project. This
plan detailed acceptability with respect to:

o Productivity
o Efficiency

e Software maintenance and performance

System performance was evaluated relative to the current in-house systems (i.e. manual and semi-
automatic pagination). In terms of field support, fine tunings of the system architecture were

incorporated to enhance the performance of PEGASYS in terms of response time and degree of
accuracy.

C.8 Frey Associates, Inc. Summary

Frey Associates, Inc. reported on the Themis TM Management Information System. Themis is a

natural language processing system that answers English requests about information stored in a
database.

The project team started with 6 staff members and eventually grew to 12 members. One person
had previous Al experience. Since most of Frey’s projects are system oriented, as opposed to Data

Processing (DP) efforts, it is surmised that most of the software engineers had DOD conventional
software development experience.

Themis was funded internally and followed a schedule defined by management. The first prototype

was completed within 6 months. The product before beta fielding took approximately 6 man years
with the final product encompassing about 10 man years.

The general process used in the development of Themis consisted of the following phases:

ldentification - determining problem characteristics

Conceptualization - finding concepts to represent knowledge

Formalization - designing structures to organize knowledge (tool building)

Implementation - capturing knowledge

Testing - validating a knowledge base and system behavior

T e T

' Tty
NG
5

o

b

4

L3
L]
4
]

.

<’
r Sl
P P
- A)
e

-
',

,‘:'/ P
1]
Jurnlulnlely

@
N
\'-"".-l‘

I
IF\.~
.\f

e
N

W

- *:.“

-ff'ff
% 'y

C.9 GTE Data Services Sunmunary :-_::.-::
RGN
.:s-:\:.\-:
Documentation was provided at the end of the ldentification, Conceptualization and Formalization et
phases. The Implementation phase was divided into 2 stages, prototype and actual product. An . _.‘-'
iteration from Identification to Implementation occured at least once. From then on, iterations were :}:ﬁ o
primarily between Formalization. Implementation and Testing (4+). Testing was used to provide PN
a basis for the user documentation of the system. Qf;x:i_'{h
As a natural language system, Themis i different from an expert system in the approach used for b'.i"ﬁ)"
knowledge acquisition. The goals of the system were limited to the inquiry characteristics of one AP AP AR
data base from which both the requirements and user interface plans were derived. The user’s wain ,-\':_:'_’-:?
contribution to the system effort was in defining the user interface and the types of utilities needed ’::f:f::#:'
to support the types of queries needed. The user was also valuable in defining types of queries for E'xfbf-_ ;’
Themis. oA
1 . -
The knowledge representation method used was rule-based since it was regarded by the design N "
teamn as most appropriate to natural language processing. The main programming tool used was PN
InterLISP which included the Programming Assistant, DWIM, Masterscope, a structure editor, '-‘:.)
and debugging tools. Source management tools were also used. y ,:)
During the development process, a series of prototypes were generated. Major design changes were :'M "'
approved and implemented throughout. :ﬁ?i:‘ﬁ"'
Themis is comprised of the following components: Language Processor, Rule-Based Knowledge :‘3{::&)
Base, Justifier, Interpreter, Scheduler, Consistency Enforcer, and a Communications Handler. The F -'-".;l‘.':j: :
Al software was interfaced through mail boxes to the conventional software. ﬁ; \ 3
Themis is self modifiable in that when vocabulary and other new rules are introduced, Themis will . \.‘
evaluate contradictions and generate new rules to clarify these contradictions. SR ::
~

Test and regression procedures are in place for Themis which include correct as well as incorrect
queries. The testing data base is continually enhanced by internal testers, customers and users.
Due to the self modifying nature of Themis, tests are repeated without ending sessions to ensure
corsistent results. User involvement is considered important during this phase and throughout the

P

L]
AT

1

ral
*

-
lifetimne of the system. Themis has built in testing capabilities along with automated error logging :C"'?.":""t
Yo _‘-"h‘-'t-\.'\
facilities. RN
RS
Overall, the development process used by Frey Associates, Inc. has proven quite successful. If any .\‘:.'-f. I
phase were to be enhanced, it would be the testing phase to ensure completeness of the knowledge. B ’::"-
r) y .-~‘ '*
. A
C.9 GTE Data Services Summary e
Sl
RANANER,
GTE Data Services reported on their Central Office Printout Analysis and Suggest System (COM- e
PASS) project. COMPASS is an expert system designed to diagnosis problems with GTE’s no. 2 . 1
EAX switch. As input, COMPASS receives a data file which contains error messages produced by AR
. Lt -
a particular switch. The output COMPASS generates consists of problem and fault identification e
and maintenance suggestions. :.::_i ‘:; '
(SRS AN
This was G'TE Data Services first experience with an Al project. The project team consisted of two AL
to seven people depending on the project phase. One team meinber had previous Al experience o !}
and another had limited Al experience. SN
RN A
1::'\:,."-’ .'
i '\;, »
C-11 oA

RASKGAN

R A e P A e N i T S AT O B T e e AT A T P T T e A N N N U M TN S W Rt X
,-“.'8-"";".;- .’&-‘\‘ {:’\'\‘.\;_‘_ o 1'.‘:%#,'-#\-’..-’\ R N R A A AT I I N N A A NN Ty
A AN X AL L NG A A AR N A R R P T AT AT VDA YR P AL I W T W
VAN POy '\fb"-’ Yo "’Q N -~ e e et e B Y e N e s e N e T TN
o N A 2 e St A SRR SO A T A S S S, S G N N

W W W W I aserm e W W W 3y

ok i 2 o LS g

AT AT O S0, W WP SN N T g N
S R T e T,
Poe

R N R B A A A

it et G ¥ gt)
-

o st P TR
o ol tug MAA S S mad el S f d d at L&A Lt av e n aWu

C.9 GTE Data Services Summary

COMPASS was internally funded as a feasibility study. Management defined a schedule where the
prototype would be built in 36 months and three months later the system would be in a limited
field study.

The success criteria for COMPASS are: technology feasibility, user satisfaction, and productivity
gains. COMPASS has been rated as a success in technology feasibility, as it has demonstrated the
usefulness of expert systems for some telecommunications problems. Currently the system is in a
limited field study and the users appear to be satisfied with the content and form of COMPASS
output. Success in terms of productivity gains has not yct been determined.

The stages of development in the COMPASS project are as follows:

e Identification - this phase was emphasized due to the system’s origin as a feasibility study.
An internal technical note and a paper were produced in this phase.

e Conceptualization - In this phase several internal technical notes were produced.

e Formalization - A software control knowledge base was added to the system to track the
various knowledge bases and method files.

e Implementation - Knowledge acquired from the expert was collected into several documents
referred to as Knowledge Acquisition Rules (KAR) documents

The above phases were iteratively visited, especially early in the project. During these phases,
internal reviews were held to report progress and to establish conventions among the various de-
velopers. A requirements analysis phase was not performed. Instead the system was bounded by
the knowledge necessary to analyze the error data and create maintenance suggestions for a certain

class of switch problems. In retrospect, the developers of the system feel that more attention should
have been paid to requirements and to testing.

A single expert was utilized to provide domain knowledge. The guidelines used to select the domain
expert were: must be recognized as an expert by his peers in other GTE telephone companies,
must be articulate, must be enthusiastic about the project, and must be available for knowledge
acquisition one week per month for at least three years. The knowledge engineers together with
the expert created KAR documents. The knowledge acquisition process naturally ended when a
particular switch problem was properly diagnosed and appropriate maintenance suggestions were
provided for the test data under consideration. The development tool KEE was used to create the
knowledge base which consisted of frames and production rules.

Rapid prototyping was not used very much in the development of COMPASS. Some of the devel-
opers fee] that this was a definite shortcoming. To track updated versions of the system, a software
control knowledge base was used. This controlled how the system was to be built from the various
files and also how changes and additions were to be saved. Actual end users were not involved in

the development. process. FEnd users were represented by the domain expert, who waa a supervisor
ol potential end users.

COMUPPASS is comprised of the following components: a language processor which was supplied by
KEE, and knowledge bases - some containing facts only and some containing mostly rules. There
is no justifier, interpreter, scheduler, or consistency enforcer in the system. Communications is not

o

-

s
" {«':-:b

hd
.l
LN

R

X

el

,,.‘
v

":

11'1'1('.
4
b3k)

¥
"
28

5 A
s

.“ 'A'
5:
L4

[
s

1-

.‘ .’.l
(\n"'
Y
R ¢
545 T
P, i

P I as i
Y
.‘.l
ALy
g)

l'.'l
¢t
r
2.
?

%

'l
2
’
|
p,

l.' .
s
)

A
(PR)
"f..c’x'.‘.

N
)
)

Fara
)
N
?‘.-'~1
P

AN |
NG
A
RN
LN
.'.-' :"4

‘t,%‘n

r',:
;

.
L2

L . 7 " . . ~ S fad s Y " " ~fat K\ “Ga¥ Saf fat_ J y o o - () J _ '.' '.0"“ W - l"

S M N W a N W -l S AT AR VA WL R AN gRl () o oW oWl A 2L 0 2L S e e

':’ff‘l
~
va

\, R 3
f>:s

C.10 IBM Federal Systems Group Summary

)
Y
I"

N
XS
LELEL

&

- - h "
[“?\(‘! Pd
AN

I-
Y
w0

part of the system but is handled by conventional software on conventional hardware for speed and
efficiency.

. @

';\.;-.

LS

]

Pl n:./_ l’ 2

Depending on the type of diagnostic task, COMPASS contains up to eighteen knowledge bases
with over 1000 frames and 15000 slots. Five of the knowledge bases contain over 500 production
b rules and there are more than 500 LISP procedures in the system. The user interface is handled
by a single knowledge base with 20 frames and approximately 50 LISP procedures. The support
environment is handled by one knowledge base with 10 frames and 20 procedures.

g
LA

.l (. {.
CH A
'I“ .’ﬁ ¥

]

Lf_'t’ '
b
> f..
£ &

o’
“
hY

L]).

E To evaluate the COMPASS system, independent experts were asked to read the KAR documents :j _‘_-‘:
and to assess the system’s output given some input. Small test files containing error messages for ::::.:::./::::
one or more problems were created and used to validate the system. The test files emphasized rule- :5::‘:.:~:.“-:
path coverage through the various COMPASS phases. Boundary value and stress testing was also ERL oL
done. This was accomplished using test files which contained a small number of messages and single e .,

K

problems. Regression testing was emphasized after modifications were made. Documentation of
the testing phase was limited to describing general procedures and overall results. LISP procedures

,,
2

oo

»
were written to perform the regressing testing in batch mode. Criteria for a test to be considered a &i:.f“
success was: for a given input, did the appropriate rules fire and was the proper output produced? ;f-;-g*-.’

Appropriate and proper were determined from the KAR documents. Another performance issue
was the ability of the COMPASS system to perform with the same accuracy as experts.

G)
K

T

e, v
‘0
o

&

r':v

E The product developers of the COMPASS system feel that some improvements in the design pro- \jﬁb{
cedures should be made. There should have been more consultation with the potential end users : RNy

oAy
L

o a
r..’ i

of the system and a life cycle should have been defined. The product developers should have been

involved earlier in the life cycle, rather than just the prototype developers. A high level design .

document should have been produced early in the life cycle and more attention should have been '.:-“."f:-’. :
paid to traditional sofiware engineering lechniques (e.g. maintainability is more important than :::};:)
elegance and efficiency). Nyt
N

C.10 IBM Federal Systems Group Summary W ‘
N ¥y

L

‘gf
2

s

IBM Federal Systems Group reported on their Fault Diagnosis and Resolution System (FDRS), e

Py Ko o,
which is a hardware failure diagnosis for the ground-based equipment of the Air Force's satellite :ﬁr}:
. . . : Y
command and control facility. The system diagnoses the failure down to the level for which there °
is a redundant component and recommends the proper replacement procedures. :::‘f-‘;‘
l’. '-I,.l. a
FDRS was developed with independent research and development funds by 4 engineers, one of whom s
. . s el " . . P
had previous Al experience. An initial problem definition phase was completed in approximately o :-,';‘_.-
3 man-months, and the first prototype was developed in an additional 3 man-months. The entire Aty
project took approximately 20 man-months to develop. The final prototype was tested in with e
the actual command and control software using a hardware simulation, but currently has not been :'::.-_‘_.»__
¥ embedded in the operational system. Y
ICCAS
. . . . g ege P w N L
FDRS satisfies the criterion of demonstrating the feasibility of a new technology. Productivity ;).::‘._«_.,
gains and nser satisfaction have not been determined yet since the system is not installed in the Tetaal,
operational environment. The system has satisfaciorily met two additional criteria; they are: speed o
of exceution, nnd integration into the main system. O ":
"\j& *
OIS
PUASAY
‘ A
c-13 N
. e
AT

g

o

' .

St ,‘\'-’A.J_‘.““.‘\'_' s‘x{\}\ . on \\’_-.}-. R R Y NN A a " o \f-.;_'.

o s o At / AR LR IR SRR N AT LGRS X
RN R AT A R AR AR NN TR NN X

B o N

S~ o Lot e W Wy W N P N AW W W W W T T W, Wy T, W W R T W, LSRRI TP ™ a® o™ «a -~y
::‘g-. -d:. I R AR S AR SR SO NI TN .‘4‘5(*& A s @x’\#\\:’\" ARG 1S _;\.x\f\
Mag \Ss s ANAN » - & N a8 -::"\"
"I . L '-hl.'

C.10 IBM Federal Systems Group Summary

The development approach used to build the FDRS system consisted of the following steps:

e [dentification

e Conceptualization
e Formalization

e Implementation

o Testing

The above steps were repeated to provide more depth of knowledge with cach prototype. Docu-
mentation which was produced included a detailed description of the knowledge, design and code
documentation. Informal design reviews and code inspections were held.

No requirements analysis was performed. Instead, the problem was initially bound by a general
statement of wanting to prove the feasability of a knowledge-based approach for this problem. The

second prototype was analyzed to determine what additional requirements would be included in
the final version.

Knowledge was not acquired through a domain expert, rather the engineers studied the requirements
document for fault diagnosis and recovery. Tables were constructed for each device indicating each
possible fault, the symptoms of a failure, tests which should be performed, and recovery actions.
The knowledge was represented as production rules.

The tools used in the development process varied with each prototype. For the first prototype a
commercially available shell was used. The knowledge based system in the second prototype was
developed using a small internal knowledge based system shell. This prototype interfaced with
a Pascal simulation which was 1/3 of the code. The final prototype was JOVIAL code which
was integrated into the command and control system. Each new prototype was considered a
separate research effort and underwent the standard research approval process. Each developer
was responsible for certain areas of the software. This individual was the only one authorized to

make updates to his assigned area. All software followed a naming convention to track the current
versions of the system.

The FDRS system consists of a knowledge base and an interpreter. A uniform knowledge represen-
tation was used, as well as a separate, simple inference engine. In terms of size, the knowledge base

contains approximately 100 rules. The following is a list of the components and the percentage of
the total system.

Component Percentage
Knowledge Base 20%
Inference Engine 50%

User luterface 20%
Support Environment 10%
C-14

2y

2! ..' 'n’ -:

S
p
o)
P

vy

2l
aly

LRI A
."o"f‘
y
LA
’.1‘ v'l

v
L g

- 9 ¥

P

* - *
.

-

Do
e’
3
e
.
R

g Aol T)
N')'l} v
» ¥
L] »
’
2 e
‘-.fi"d‘l

R
o A
2
P

LIPY

~
[
)

o gn ’ e ‘2 y- . ‘. A% ol R b . g v
%5 240 aCaNIC AL RS gy A M SO ARR JAaS i e it el it el St el L LAY » ¥ N Y, Al Anl G870 RN Y

C.11 Inference Corporation Summary (Authorizer’s Assistant)

No formal test plans were developed, instead each path of the knowledge base was tested by going
back to the original table of possible failures and testing to see if each failure path was followed
in the expected manner. Unit tests were performed on each separate rule base, and integration
testing was performed on those rule bases which interacted with each other. The FDRS system
was tested within a simulation of the command control system.

C.11 Inference Corporation Summary (Authorizer’s Assistant)

Inference Corporation reported on an Authorizer's Assistant system which was built for Ameri-
can Express, Inc. The system aids human authorizers in evaluating complicated charge cases to
determine if the charge should be authorized.

The Authorizer’s Assistant was developed by 8 people. The project personnel was broken down as
follows: 1 Manager, 4 Knowledge Engineers, 2 System Engineers, and 1 Technical Writer, all with
previous Al experience. The first prototype was developed in 15 man-months, and 72 man-months
later the fielded system was completed.

In terms of demonstrating the feasibility of a new technology and overall user satisfaction, the
system is considered a success. Productivity gains are in the process of being measured. Inference
noted additional criteria for this system as the direct savings due to fraud loss reduction, and the

less tangible improvement in customer relations which are promoted by the systems explanation
facility.

The following are the steps utilized in Inference’s development approach.

Knowledge Acquisition

e Design

Implementation

Knowledge Engineering/Implementation

System Interfaces

Validation & Development Tools

Commercial Systems Coding

Expertise Validation & Refinement

e Acceptance

The Knowledge Acquisition and Design steps were performed iteratively to produce a prototype

(Implementation). With the prototype complete, the steps of Knowledge Engineering/ Implementation.

Systems lnterfaces, and Validation and Development Tools were performed and produced a com-
plete systen. From the complete system the steps of Commercial Systems Coding and Expertise

<t <
R

“‘.:L‘..
NI
cl.. AN
TN
AN
A
ot ﬂ
)
o
N
‘J\i (]
A
®
AR
NN
r:.""_
Ny .,‘a
ﬂ‘l 4
(F B
o) '

e
preigete !y

<
>
o

e T

2

o,
5

> Q@ 5

a
LA

&

v
.

A
O,

:'.'s x
,‘

____“,,
-i}&'s
5
Pl
X

<
.

v '-{5
s
b

-."-:'.\'"';{

o e

AR
\". _:-_',-,‘ [1

\
¥

X
:'.\" iy
AR

=,
b

%)
B

- -
.I-’:\)..! .
A
h % o)
EL AP

2
2
PR s o

|]
o)
5

L T 2 e
'n{‘n‘a_'-

P XS

o
S
%

f..l
J a

vy
P
"
-
7

7

PR A
Lo N Yy
Il't'l'l"n’.::‘
"
] {‘n{ "l ’.

o
:'.' X]
'y
?I_I

1 4

‘.":-
1@ <~

I*l‘ i
X%
/
"‘."& A

o
o

e

N N N Y

b
»

:_:1
£
Pe

%
oS

Validation and Relinement were performed. When these steps were complete, the project was ready - '
for the tinal step of Acceptance. Throughout this process, there were discussions and reviews with DR
| | 8 :
AR
"]
~ \::M
C-15 AN N
.‘-E.‘-,,.r\ N
W W LY Y RCDP o W P I BV P e P L T S T L T A S R A L ST R R e N W A e o e e T e e L N e L S]
"ﬁj{.’&"l‘ﬁ:”\/\’\’\’\'\\‘"'.ﬂ. DAL A SO 0 O NG B e -.*-\.3.‘-."-_":-."‘\ ALY "".,-\.”3."'-,."~."'-..}-.";."'«."'-.4> B O «-.';-.j, : $~.
NN TN AWy PG A i R O v N ¢ A i N TN o A TR T N
4;‘\-, \\?‘\ o “ WO '\-\'-s-\‘-,_‘.,ﬁ_(n ST "J-"'S"“.u" A A Y Sy N
W Faate A B e e e IO L U A e Ahte b 'f NAT Ve n . » DRSO LYY,

-

:‘oﬁ"&l..,

-

o
s

Fd

- o
--

AN

eyt S S N

'{b‘i

-

o fab Baf 4! dg® et 0n® 20

C.11 Inference Corporation Summary (Authoriser’s Assistant)

the customer. Documentation that resulted included: a Design Document, Project Organisation
Charts, Schedules, Users Manual, and a Manager’s Manual.

The requirements analysis phase performed was focused on the activity of knowledge engineering.
Users were included as experts and a Design Document was produced. The process was bounded
by continuous discussions and reviews with the customer.

The method used to acquire knowledge for the Authorizer’s Assistant was as follows:

1. Watch authorizers work

[5]

Team review of cases off line with experta

3. On going process of Knowledge Base refinement

4. Review of code by experts

5. Review of system’s behavior of real cases off line with experts

6. Doing the job and learning first hand

The knowledge acquired was represented using production rules. The system's knowledge base has
expanded and the decision not to include additional knowledge was a managerial one determined
by the constraints of the contract. Six experts were used, and they were chosen by the customer’s
internal review process which is based on service, productivity and accuracy of work. One expert
was used predominately more, who settled inconsistencies and discrepancies.

Inference’s ART development tool was used, along with Symbolics Common LISP. Users were
involved throughout the development process. The prototype was a subset of the final system, it
was not and never intended to be “throw away code”. Design changes did occur over the course
of development, but the fundamental design did not change. Approva! for the changes was via the
project manager and interaction with the customer, when needed. The system is connected to a
IBM transaction system. This proved to be a very time consuming process. There was no formal
soltware configuration management on the project.

The Authorizer’s Assistant has a separate inference engine, a uniform knowledge representation,
language processor, incremental compiler as an interpreter, a communications handler, and a sym-
bolic scheduler. The knowledge base consists of 800 rules. The following is the division among the
types ol code:

e Knowledge Base 20%

e ART Inference Engine 40%
e User Interface 12%

e Environment 28%

No formal test procedures were developed. Code was written to partially automate the review
process such that sets of test cases could be run in batch mode. Users were involved extensively

C-16
- e W W Wy W # g L S - LI 1‘ "\'V‘V'ﬁ"\}(\
S CC R R b A AT A A A TN &:_;: T AN M) PN
N B O RS T, Lt A SN I N
X :j: S'w.w. o r."\""s AN v;}. W \.’J:f,,_\\r “ T
A ~ - - ¥ ~ . . ' . . L]

e A Ae% e® Gt SRt A A R

SN
e

.Y TR YRN T MR R~ - .=

PaAu i i SR

O
-h.‘-f. f A

ks

LA

'. ’ l'll

el
220 @,

» .Ir:h ‘
o,

vy
vy

.:_,
'

o

iy e IO S |
P
& % N

W
»
o

l\\.‘c-
XX
T

v gy
b T} "y :

'_.-”‘\f\-)
,-.:_\'\::‘.
RSN,
EREL LAY
[]
. N LN
C.12 Inference Corporation Summary (Medical Charge Evaluation Control) :.-_'.-}_.r: ¢
.::\::x":\ ¥
RAANENS
ALty
in the testing process. The expert system results were compared with the experts conclusions and :-'.‘-‘:J"'
found to be correct 97% of the time. Testing was done at the system level only. The systein is not ” »® -
modifving. W N
self modifying &:‘\:::"‘ 1
System performance was very important. Performance was measured along three axes: CPU, j.)v:'r J‘\'
swapping and garbage. The code was “instrumented” to find out where CPU was being used and {;'\-ﬁ.. o,
modifications were then made to various parts of the system. Inference feels that the performance i
improvements were made too late in the development process, it would have been easier and faster
to have made design decisions all along that would have contributed to a high performance system. :_-r\?\,f
User suggestions were made, and negotiation was used to determine if they would be implemented. ,_::.r:.j:
o
o laly
The following is a list of Inference’s lessons learned from this project. "‘\j"..-‘ ~
& P Y AL
¥
. o) N
1. More design should be done up front. R
TN
r:f:.‘:r
2. Performance monitoring should be done throughout the development process. oinia
PN
3. More test beds should have been developed for simulating various parts of the customer’s ;.:-?.:-“9\;‘
systems to avoid the dependency on last minute testing. g -.':.-:
RS
ey
4. Application of more “classic” software engineering techniques. Cada 40
5. Use of management tools for actively tracking the project: (i.e. Gantt and pert charts and »,-.!.-
automated schedulers). : -_\{'_:':‘:-'
e
C.12 Inference Corporation Summary (Medical Charge Evalu- %
. P i
ation Control) oA
SN
e
. . . A S
Inference Corporation reported on a Medical Charge Evaluation and Control (Medchec) system '_-:..\:.'-f.
which evaluates medical claims and prioritizes them with regard to possible mischarging. Inference ®
has had extensive experience building Knowledge Based systeus; prior to developing this system :;_j—"j_‘:
they had built somewhere in the vicinity of 10 - 20 systems. Medchec is being developed under :-::-:.'-::
contract by 3 engineers, one with previous Al experience. The first prototype was built in 6 NN
man months :::-:::';-:'
In terma of overall user satisfaction the Medchec system is so far considered a success. Inference feels :_.\:'\:g., ‘
this to be the most important criteria for success. As far as productivily gains and demonstration -:_x:,-:'_',.
of a new technology the system is also considered successful. Inference noted that another criteria J:-:::f::.
against which Lo measure success was the degree to which the developed approach can be easily }'\,;'-.:;.,::
' . e NN
extrapolated to other applications. PN,
®
The following are the steps and products used in Inference’s iterative development approach. N N
R
1)
\ ‘.. l.\
s
C-17 ::.:‘.:::,:f
)
R T T A N T T e AN e TS A L N N P
N AT AT A AT AT A T NN N IR Ny F A A N A AT AEN S AL AR AT AT AR A RGN R IF AERIRASS,
S AN W AT WY NN SN '?”ﬁ‘{:{:-‘* ':"\’ WAl f"w:a?f:a\a:a: AN AN .r::.-:f:‘:: 'a:.-::._-,
Aot e LN . N, .r\.rW' LT -r\._-a~ ‘ ‘-'\r.\ Y ‘\ . -» 3 .r,\.:;.-_x\.::.r_..:._.'_,;.-'\'w\.-‘\a-_:,.

L

2

= .’;IL Pl '.,‘

~

Pl * ".

SVl

)

o Yab WP o)

P
)

AL

AR a1

C.12 Inference Corporation Summary (Medical Charge Evaluation Control)

Steps Products
Identification Proposal
Conceptualization Rule set description
Formalization Data structures
Implementation Code/prototype
Testing Test case panel results

It is important to note that these steps were not performed once in a sequential manner. Rather,
all steps except identification could be entered from the previous and/or succeeding steps. Re-
views were held at approximately 1 month intervals. These reviews included high level overviews,
demonstrations, reports produced from the expert system, and PERT charts of current progress.

A requirements analysis phase was performed in which the users, who were also the experts, pat-
ticipated. The experts were interviewed and asked how they would audit hundreds of claims if they
had the time. This system does not mimic any current operations but instead performs a depth of
analysis never done before. The users/experts completely defined the requirements of the system.

Knowledge was acquired from 3 experts during group discussions in which very little conflict arose.
The knowledge was grouped as follows.

1. experience of past mischarging
2. expectations of mischarging patterns

3. suggestions by knowledge engineer

The information was documented in the form of taxonomy and English-like “rules”. The knowledge
was represented in frames and rules. The frames were used to index demons which computed
patterns of repetition of a service and costs of a service. The frames were also used to linearize and
combine the various assertions of interesting patterns for reporting purposes. The rules were used

to detect each pattern of mischarging, one main rule per pattern. The knowledge base expanded
as “recommended by the experts”.

Development tools used were Inference’s Automated Reasoning Tool (ART) and LISP on a Sym-
bolics 3675 Rapid prototyping was also employed. The philosophy on the Medchec project was to
build prototypes as a subset or framework of the completed system. From the start it was designed
to be extensible and expandable both in performance and capability of supporting all types of
knowledge and inferencing or reasoning techniques. The prototypes were not throw away systems.
Many low level design changes occured with no approval necessary to implement changes. Also,
there was no formal software configuration management on the project.

The Medchec system has a separate inference engine, a uniform knowledge representation of facts
and rules, a communication handler, and a justifier which was used to flush obsoleted facts. The
system size i3 small and uses forward and backward chaining reasoning. The initial knowledge base
consists of 50 rules. The communication handler consists of 3000 to 4000 lines of LISP to handle

C-18
Wy - N R N A "J—"J-";-”'J-(,h
----- NN N A R R iy g ARSIl T A AL
fw: :J"'*" l.{l. '5 :.V. }' ‘: Q' :::.,;-s.f\. " L: : :. ';,\:ﬁ*:)':) :‘,". o ':. o’ '."-f\."“-"f:lw .\
. P oAy RN
$"ﬂ.|‘=‘ O e o \. N iteat, '\. e tehs WS .

A0 M AMERELLGA S LFLELECES)

oy
e
AN

X

&

.
RV
D"I '.
b’y

PR A
A NNS N
PR EA
Bl 5

PRI

)
*u
LY
W

LY

- '\ - '\’" J.\ J".&"

2" [

,fv Vg .a-*\.

L \’N

i ae . N .l ath ahd afh aha s dhe - AR &R~ vy PTUTON TR
acns - ~ ' A Sl Sl 8 o Wy W wWe T e Ny W, W W R N 0 e 0 ot

5
s

N

®

C.13 Lockheed Aircraft Service Company Summary (Expert Software Pricer) ‘}.:-f;\':_‘.
RGOgesy

[\’5' -

'\-'\J‘.‘f
data parsing from the claims database on a S-mini computer. Also included in the system is about RIVOSIGAN -

140 schemata for loss types and diagnoses. The following is the division among the types of code. 2 E".;
u?\ Ll

e Knowledge base 30% o :
N

-

e Inference Engine 10% - enhancement of ART features :(/«:.u:b,"\

NAAdeS

e User interface 20%

¢ Support environment 40%

No formal development plans were developed to test the system. The experts review the reports
generated by the system to assess accuracy. The Medchec system incorporates feedback from
auditors on confirmed mischarging to alter its ratings.

C.13 Lockheed Aircraft Service Company Summary (Expert
Software Pricer)

Lockheed Aircraft Service Company (LAS) reported on an Expert Software Pricer (ESP) system
for software costing. Included in the ESP system is a knowledge based Expert Sizer which assists
in estimating the size of the software system being bid. Once determined, the size can be input
into one of ESP’s pricing models.

N)

wowavg
ESP was an internally funded project and the first Al project developed by LAS. A two person team ‘;:- ﬁ:'.: ¢
developed the first prototype in 4 man-months. It took 12 man-months to complete the system. \’b’\"ﬁ

{ .

x %

\:'
-

The schedule was defined by the funding that was allocated. Where applicable, LAS Software

. . -
Engineering Procedures were followed. \r.' NN
LAS feels that the system is successful in terms of demonstrating the feasibility of a new technology AT
and achieving significant productivity gains. The ESP system has demonstrated the capability of .'_';x:-.:}::
applying Al techniques to software costing while also providing savings in software bidding timne -::-j:::
and effort. In terms of user satisfaction, LAS is encouraging the use of the system within the ::‘:{:{:r
Lockheed Corporation. ':?:s.'-'f. |
The development approach used to build the ESP system consisted of the following stages: 3o —e;

-F.'-"“ ‘o'.‘
AN
. . AT
e ldentification -ﬁ""-’-":’
NN
e Conceptualization PaENIND
s WL . “."‘
s Formalization ;:::;._-;.
W)
. AT
o lmplementation QRO
.-\.-.. [K
. A
o Integration SN
e Demonstrate/ Test TN
j'_::b"‘s- ,
BAATAY
RN
C-19 'J‘,::‘\:': |
AN

C.13 Lockheed Aircraft Service Company Summary (Expert Software Pricer)

. - 1 i3 '. »
About 2 internal reviews per month were held during the development process. These reviews
involved status reporting and demonstrations. A requirements analysis phase was performed which
yielded a Software Requirements Specification document.

Knowledge was acquired from examining source code and docuinentation from completed sofiware
systems. The functions of the systems and their associated sizes were then documented. Knowledge
acquisition is considered to be an ongoing process. The knowledge acquired was represented as
frames with incomplete knowledge denoted by flagged dummy information.

The ESP system was developed using the Lockheed Expert System (LES) shell. LES includes a
backward chaining, goal driven inference engine. The user interface included in LIS was enhanced
to make it more user friendly and accommodate the highly interactive nature of the Expert Sizer.
In an attempt to limit the solution space, each type of software system to be sized (i.e. avionics
systems) is represented as a separate knowledge base. Rapid prototyping was performed very early

in the design conceptualization phase. Users helped identify bugs and made recommendations for
improvement during the development process.

ESP is under configuration management using the VAX/VMS CMS system. A Software Change
Request must be approved before any change can be made. Once the change is completed, a
Software Change Description must be generated before the change is incorporated.

The LES shell provided the following elements:

Language Processor

Justifier

Interpreter

Scheduler

Consistency Enforcer

Comrnunications Handler

The knowledge base consists of 77 rules with 700 lines of factual knowledge. The user interface and
support environment written for ESP consists of 1200 lines of Pascal code.

There were no formal test procedures used to validate the ESP system. Systems with known size
and costs were used as test cases. If the ESP estimates were within +/- 80% of the actuals, then
the system results were considered acceptable.

Knowledge acquisition has been a difficult and time-consuming task. It is felt that a tool to allow
nsers to input their site specific sizing data is needed both to alleviate the system developers from

the knowledge acquisition task and to allow users to more easily customize the knowledge base.
LAS plans to build such a tool this year.

.
id

o,

4
b

S
222
".5‘?-.

L Y
u".l
' &

[
P4

X

8 'y
e

.1
Ay

L) ;
"l
= 8

+
I

Y
od
r-

1]
[

<5
&
A

¥

5,
Ly
N

b3

h'J
X

L
[

v
L
4

X

j+f
7
1)

¥

[
(s

l'
A0
KERSL S
AN

%

e
b

vl

¥
H?l'.’

%
f

b
i

’ o
A 'y
Pl

L4

i
- &

e
5
25

A 33
LY

LU
o

SAlC

~ " .',
4

RN o

- K e,=

"'.' .
S P
l"ls

LI
Y.

v
AP
':" 'l"- 5._ '-" ¢

1%1
LY

2
ZLLT
® Tsussn,

AT RO TR AT A N M WL W WUNG WL VLW WU NIRRT BN AR AN A A A A A MR W I 0 442

)
(L
%
&
ey C.14 Lockheed Aircraft Service Company Summary (Frequency Hopper Signal Identifier)
[
b C.14 Lockheed Aircraft Service Company Summary (Frequency
e Hopper Signal Identifier)
el
Y
ﬂ Lockheed Aircraft Service Company (LAS) reported on a Frequency Hopper Signal ldentifier sys-
X tem which detects and characterizes frequency hopped signals. The Al component aids in signal
"‘ identification. This was an internally funded project and the second Al project developed by LAS.
P ped by
. One person, with prior Al experience, developed the first prototype in 9 months.
. , The system is considered a success in terms of demonstrating feasibility of a new technology. As .-:.-'.._
K~.- far as significant productivity gains, the system has been successful for some but not all possible g
" signals/signal environments. -
A requirements analysis phase was performed which yielded a technical proposal and report de- ‘

o scribing the theory and implementation in detail. User involvement in this process was considered N
) g Ao
" very beneficial. RNt
) pEAY,
Yl Knowledge was acquired through a literature review and interviews with experts. The experts Q‘;ﬂ;
o provided a small amount of very useful information. The knowledge acquisition is considered (o ;_';s:
N be an ongoing activity. The knowledge acquired was represented in a temporal framework with . ..,
“ confidence levels attached to most inferences. _'.-,'_.,J.:-

4 - e N
(o The system was developed in Common LISP on a micro Vax. Iterative cycles of design and imple- -_:‘_-';}
" mentation were employed. The magnitude of changes was large with no prior approval necessary. P
A Rapid prototyping was used to test feasibility of implementation and to identify shortcomings in S

design. The iterative cycle consisted of the following steps:

Implementation

Refine prototype

b i N M
[]

o Test to determine shortcomings
)
e e Upgrade and expand prototype
{ ;.
b, C .
s, The prototype was never frozen. User participation greatly influenced the development process.
\\
The architecture of the system consists of a uniforin knowledge representation and a simple inference
oy cagine. The system containg the following components:
La
N
¥ o Knowledge base
2
; . LU
" o Justifier RARA
-
3 LS
» o Scheduler “ind
. s
. R r"-.\:'.-
o ("onsistency enforcer AN
EACACs
e] .-;r‘:.r
< The size of the components listed below is in terms of the number of LISP functions: Ny
® |
¥ Ay A
s e Knowledge base - 50 AN
1] SN N
* Y
. N
-~ NNy
’ ESANAS

~
@
2

5

C.15 Lockheed-Georgia Company Sununary

e Inference engine - 60
o User interface - 20

e Support environment - 40

No formal test procedures were developed. The testing strategies consisted of simulated real time
response; i.e. how fast could a hopper signal be detected and characterized, also, how do a wide
variety of noisy signal environments effect performance. The criteria for system tests was that of
consistency and improved performance rather than pass/fail.

The svstem developer feels that taking the time to try to obtain a general knowledge of the ap-
plication. and how conventional methods approach the problems can be counterproductive since it

tends to channel thinking along conventional lines. This was also true to some extent in reviewing
Al approaches.

C.15 Lockheed-Georgia Company Summary

The Lockheed-Georgia Company (LGC), under a research and development contract from the U.S.
Air Force, is developing a Pilot’s Associate system. The objective of the system is to provide
pilots of single seat fighter aircraft a near real time on board support system. The system’s jobs
include monitoring the mission environment, evaluating each situation, and providing intelligence
to the pilot on the current capabilities of his aircraft and the tactics deemed usable in a specific

situation. The information provided to the pilot is analyzed against the mission or alternate mission
objectives.

The project team consists of over 40 engineers. 65% of the team has had some previous experience in

Al and/or Expert Systems. All of the engineers on the project have had prior experience developing
software for the Department of Defense.

The Pilot’s Associate is currently in the analysis stage. It is expected to take over 240 man-months
to conduct the analysis, develop a simulation package, conduct two demonstrations, and deliver
documentation to the customer under Phase I. Significant productivity gains are scheduled for
Phase [, since knowledge base designs will have been established. Phase II completion is scheduled
for February, 1989 and aims at developing real time processing of cooperative Expert Systems. The
success of this project will be measured by two demonstrations of a portion of the overall task.

System development of the Pilot’s Associate is based on the rapid prototyping of elements within
the system components and integration builds around the mission manager executive which is a
central system blackboard. Informal reviews are held prior to each integration build. In addition,
formal design reviews are scheduled during the three year project.

The requirements analysis phase was completed thirteen months after the start of the contract.
This phase inciuded rapid prototyping to define requirements for each system component. System

Specifications and Subsystem Description documents were produced for each component of the
system

The knowledge acquisition in this project is accomplished via documented interviews with Air Force
fighter pilots. These interviews are reviewed by a technical review board consisting of Lockheed,

. VT rvynrs
ey

h r’l"

P A

o

PR AR
"’
5,
Y

."'l.l

»7
3

e

e
:
I':’

-~

v 5 5,
e 55 ‘2
v

Iy

W, IF..J‘,;$~|F‘:J';-"\"J',;.'\.
~

'h
v

C.16 MITRE/Bedford Summary

Air Force, and contracted experts. Knowledge is also acquired from the following sources: flight
engineers, A/C design specialists, manuals and Air Force studies. All facts shared between the
developers are posted on an electronic bulletin board for review by other experts. AH documen-
tation is approved prior to incorporation into the technical database of the contract. Approval is
required prior to each knowledge base change and is granted at the project management level. Users
are included in the following aspects of the development process: reviews, knowledge acquisition,
demonstrations of the prototype systems, and quarterly scheduling.

The development tools employed on the Pilot's Associate project are: ART, LES, and OPS5. All
subsystem developers have a major commercial tool or a mature internally developed tool. An
audit trail is being used to track design decisions/design rational. The design changes are approved
by program management. The prototype releases are under contractor configuration control and
are subject to control review prior to release for integration. Baselines are being used to “freeze
in time” portions of the system. These baselines are under contractor control. The configuration
audit trail is maintained by using a Code Management System on a DEC VAX System.

The Pilot’s Associate project has several expert systems integrated into the product. The system
architecture is characterized by the following items:

Knowledge bases and inference engiines are primarily separate

Several knowledge bases must be “translated” to be understood by one another

Most inference engines are simple

Overlapping knowledge.

All subsystems contain a knowledge base, scheduler, and communications handler. A language
processor and justifier are also components of the system. The mission manager handles consistency
enforcement.

For system evaluation/validation the ~ ilot’s Associate has developed and documented test plans.
A Test Directorate, made up of experts and software engineers, develops test cases for formal
review. The tests are conducted step by step and witnessed by personnel independent of the
design personnel. A documented record is maintained for each test. Testing is rated as passed
il the syatem requirements are satisfied. Experts will evaluate system performance against the
apecified performance of objectives and selected test cases. Currently no tools are being used in the
testing phase. Quarterly demonstrations and reviews are conducted by management and customer
personnel,

C.16 MITRE/Bedford Summary

MITRE reported on the Liquid Oxygen Expert System which was built for NASA Kennedy Space
Center. The purpose of the system is fault detection and diagnosis of bad sensors and components
in the liquid oxygen loading component of the Launch Processing System.

O R A A A T L T U TP PR S
. L N A S R SR S AN RS PN T .
oo, .-? \J‘\.-""_.- -..r.'z. PAZN J'\.‘_ o . R R e PO .
" ~ ~ -~ . Nt A N s
ASAS o LT g AT R + Fd Py
-, . .

v'."-’J'II(\f_'"
X XA

l".

<

o

58 %Y
o

'

L
)
L3

&

(s

L

4%

»

LS

A)

s

R

PRI
ey

LYY

b

'.{':

’1

LY

¢

‘7,

- ’- "

e

A

7

> .

-!‘

|

t

AD-A194 104 ARTIFICIAL INTELLIGENCE SOFTWARE HCOUISITION PROGRAM 3/3
ot UHE 1(U SANDERS RSSOCIATES_INC NA
ET RL DEC 87 RADC-TR-87- 249-VOL-1

UNCLASSIFIED F3.6.2-85 C-025 F/G 12/% NL

A N T A R N T T KR N3 O KW R AT WSS SO PO AN R B IR W O LA R R AU A R T Y

!

FF

o
FIFEEERE
EEEE

—

.—

rr

r

rr
=
wm

o

=
=

2 s pee - &
= = li= R
“ ,z’o

£
{
I

.v .-.,
it

MICROCOPY RESOLUTION TEST CHART
URFAL .- TANDARDS [963.8

W
a-'f-'z 7

SO0
f.f F'g:
i

i

)

7
)

D

7

- - - - - - - - - - - -

l‘.? -

o TR, = "vv -
g ':-":‘:"f‘ v AR "’\" Ay -"‘a , A
»\\-.4.\,,5. A G R AL R RO AN

T .5 R CT I AT A AT " \'4- |. A
W b '. O !*p N Y ﬂ ,'- >‘ \ N
A% el 8 S Pt ol ; h. N, W, LA A

i j . o mes g N caln Al AT R ol ¥at eV, 4 vl Yat vl Vel v o tul N 4 y &g L
BT TR AT aP TP S LT S TSR T LT TOR TUC TN T PO PO PO RO R WY b . v ¥

C.17 MITRE/McLean Summary "'A?'.

. NN ¢
The project development team consisted of 2 people: one MITRE engineer with 8 years experience P
in building Al systems and one NASA engineer with no Al experience but considered the domain In s
expert. Neither had experience with military software standards.

The Liquid Oxygen Expert System project was funded on a yearly basis and there was no prede-
fined schedule. However, the first prototype was completed in 6 months and, after 2 years, the
final prototype is being used in background mode. The system is considered a success in that it
demonstrated the feasibility of a new technology and achieved overall user satisfaction.

S

The first 3 months of the project focused on the problem definition in which the users were in-

dispensible equal partners. Requirements were never frozen, but rather evolved as did the team’s
understanding of the problem.

v
P

I-r < "
0
."
)
EF L L

2

The knowledge acquisition process, which is never considered complete, involved informal discus-
sions with NASA personnel, review of existing software and documentation that described the
existing software. The knowledge representation method used was frame based since it best re-
flected the structure of the domain. Throughout the development of the system, the knowledge

base did expand with the approval of the domain expert. Programming tools used were Symbolic’s
ZETALISP and FRL from MITRE and MIT.

AN
vy
Y-‘

Sy -

?r - .
q. "

<<

53

P
é;': 3{

During the development process of the final prototype, several “sub-prototypes” were built. Better
ideas spurred major design changes which were then implemented as the basis of a new prototype.
Neither designs nor prototypes were ever frozen; changes were made upon consensus of the domain

expert. Because the domain expert is a user of the system, there was considerable user input
throughout the development period.

g
XA

£
57
X35

-
CJ
-

(

)

Y $
o

£

o
Y.

The principal components of Liquid Oxygen Expert System are the knowledge base, a consistency
checker, a fault location algorithm and an interface to the user or outside sensors. The components
were chosen for appropriateness and decided by team consent. In terms of conventional software,

the system interfaced to Modcomp minicomputers over a communications link for sensor data
transmission.

gy

The system was tested as it was developed, against test cases and live sensor data - its performance
is judged by whether or not the users agree with its conclusions.

>~

¥

Overall, close user/domain expert/developer interaction had a strong and beneficial effect on sys-
tem development. The absence of a formal development procedure was an extremely positive
environmental factor, leading to a strong problem solving environment and high morale.

CeY ra o 2 |
: 7,

C.17 MITRE/McLean Summary

LS

MITRE/McLean reported on the ANALYST system which was deployed to the 9th Infantry Di-
vision in Ft. Lewis, Washington. Further plans call for using the systern as a test bed at both
Ft. Sill and Ft. Leavenworth for DARPA projects through fiscal year 1988. ANALYST grew out
of sponsored research to analyze and apply production system techniques to military applications.
The effort evolved into a contract to develop a general knowledge-based aid for intelligence use.

The system processes sensor returns from different intelligence sources and displays a transient
situation of enemy combat units in real-time.

,'rjv-“;;'

C-24
'I.‘ e
TR O - LR g TV, LRI A T TS 19 ‘I‘f"""‘f".f,’]
; O SN O IR T A TN T L R R LB
! v, “]',‘I ‘::..‘:: .‘.N‘.‘ fv w):}M) s h . #Jﬁ d P*‘ \w\:,:\v;c_';\:.\i: *l; \:..'r. ‘:: ‘;- ‘; B ool ', e f:(: -’~) ¢ f.‘ .""..: .': :" |
) . . WO T\ T AN e
{‘\“.\'s‘:‘:"‘.‘\'}‘n'~"'~'-‘f"f\‘*=:"!A ,«’*'\:",«'\‘\‘,‘.!.1 AT RN NSRRI RTINS A0 S b il

MU WL WU UMW IR M AR AR ARON AN LR AN RN

l,n,t‘ \‘;l'.l’

C.18 Northrop/Aircraft Division Suminary

The project development team consisted of five people, including one domain expert, and one
managing Al scientist. The estimated development time for the first prototype which did not
emphasize performance was six to eight months. The following year and a halfl was devoted to
enhancing system performance capabilily and building a knowledge base to facilitate the user
modifications.

About eighteen months were spent doing requirements analysis. During this time, an A minus
specification for ANALYST was produced. Requirements Analysis paralleled rapid prototyping
and thus influenced the choice of Al technology and tools.

ANALYST was developed using in-house and LISP tools. The only tool purchased was a micro-
compiler for the LISP machine. There were procedural differences between the development of
ANALYST as an internal project and development for the field prototype. There were a number of
observations made during development. It was recognized that the lack of standards was compen-
sated for by the use of Al and LISP machines. Configuration control become more defined when
the project started focusing on a delivery date. Control extended to files within a delivery build.
Changes in code were documented with comments and verified by the programmer who made the
modification. During development, the system was alac used as a test bed for spatial and temporal
techniques as well as evidential reasoning.

During the testing phase, a test of the inference engine and access to the knowledge and data bases
was performed. A critical issue with the ANALYST system was the ability to interrupt during a test
for a what-if question in order to explore the consequences of a particular path. The method tested
for absences of firm requirements and complete specifications. Since several experts with different
opinions were available, testing become even more difficult. However, the user community was
conservative in their changes and considered the effects on the inference engine before suggesting a
change. Regression tests were also performed to ensure that previous prototype capabilities were
maintained intact.

Overall, the need for a prototype with user involvement in the demonstration or test phase was
considered important. Once mature, it was stated that the prototype should be released for some
limited operational testing after a much shortened in-plant acceptance test. Hardware should be
subjected to the standard testing cycle. The need for a specification requirement for an explana-
tion of the system'’s capability was recognized. The concept of training a domain expert about
knowledge engineering was favored over teaching the knowledge engineer about the domain since
the lntter is a time-consuming factor. However, the knowledge engineer was considered to be the
main implementor and director. In addition, the need for software discipline and standards was
cmphasized particularly with respect to the need for a specifications document as well as design

and control principles.

C.18 Northrop/Aircraft Division Summary

Northrop/Aircraft Division reported on the Expert System for Target Attack Sequencing (ESTAS).
ESTAS, an internally funded system, is a real-time system that provides decision aids for pilots
under stressful and high-workload missions segment, i.e., the combat phase. Some of the decision
aids are navigation verification, target prioritization, target selection, weapon allocation to targets,

C-25

‘ . .00 by, T W !
‘\.t".c ety S A :, R “@ X -q'
.‘l'..u.‘.\%'l‘. \ %

.h ‘50 o‘l 0'5; \. ‘\..“"'\\‘t“‘.. W O“,Q “.::':.:h\. t:..;: 3: “‘.ﬁ %:. Y. '5 . 1 N .‘“:“.‘ A KK

t‘ Y "
n'l.:'l ‘I“

"
o ‘o',

» 'ag
£ "' H’

o‘H

|"'|"

AL P LR At S G L Ty
LA \W:.».‘\?\-

-‘¢ "b“}“\ s
it
N
C.18 Northrop/Aircraft Division Summary e
l,\'. \
and weapon readiness preparation. The system is expected to provide responses under all conditions
including unpredictable ones.
ESTAS is designed to be one component of a highly integrated, flight simulation system. Its re-
sponse is very dependent on the action/behavior of other components. At this time, however,
schedule and funding constraints precluded the integration of ESTAS with the overall flight sinwu-
lation system.
The ESTAS software development team consisted of four engineers, two with previous Al experi-
ence. In addition, two of the four enginecrs were experienced in conventional soltware development. iy
for DOD. The development of the system from problem definition to lirst prototype took six months (

)
-

or two man-years. Management predefined the schedule, and no follow-on effort to lield the syntem
followed.

'y
P

ESTAS was developed within the framework of the traditional software development cycle with

the exception that iteration amongst phases was acceptable. The specific model used to develop
ESTAS consisted of the following phases:

e analysis - document the operational environment which included mission profiles and timelines;

o definition - document the system functional requirements and applicable areas for Al software
development;

e identification - document specific input and output criterion, and general description of the
application requirements based on problem characteristics;

e conceptualization - report on Al concepts and techniques that satisfy application requirements;
e knowledge acquisition - document rules and facts;
o formalization - expert system shell code and related documents;

e implementation - updated document of rules and facts as well as code the knowledge base;
and

o testing - test result reports.

Iterations through formalization and testing were an inherent aspect of the software development
effort. Requirements were frozen at the end of the analysis phase to avoid modification problems.
Prototyping began after the conceptualization phase. Documentation was enforced but not based
on the MIL-STD documentation practices. The documentation included software requirements,
top-level design and detailed design. Technical reviews to assess system progress, as well as analyze
and solve problems were held periodically. Progress reports were given to the developers. System
demonstrations at the end of formalization, implementation and testing were also provided.

Knowledge acqmisition consisted of domain research by the knowledge engincer and interrogations
of the expert which included questionnaires, round-table discussions/interviews, and acting out
of hypothetical situations. Laboratory simulators were used to illustrate the experts views and
comments. The means used to gather the expert information involved note taking and tapes.
Then, both were transformed into prose and eventually pseudo-code which underwent a formal

C-26

B ORI I N X
it
Attt S te S

C.19 PAR Government Systems Corporation Summary

approval process. Knowledge acquisition was considered complete when the expert approved the RN

knowledge base for the specific case. At this time, the knowledge base consists of 171 rules. The)
“ inference mechanism used is based on both forward and backward chaining. ;;'.:,:::;
y The rule-besed knowledge representation method was selected because of the need for real-time ::'::e’:;::f
Y system responses. At this time there are no means for accomodating ill-defined or incomplete "::::‘.::;
L knowledge. The chosen representation was reviewed during a design walkthrough. The knowledge NN
base continued to expand through informal reviews and a formal approval process until the first .
o prototype release. The only tool used, the LISP workstation, incorporated required tools such as) “:‘:‘:'.?
:’. a language (Common Lisp), a graphics implementation and a developer interface. :.'%E':'
jz The major components of the system are a knowledge base, a separate inference engine and a user \ .’.4":?."1‘;
R interface. Cost and schedule constraints precluded the implementation of a language processor, a atnt
» justifier and a consistency enforcer. The architecture underwent a formal review and approval by ;
X technical associates and the project engineer. :::':‘.:::::
¢ (¥
:E Performance of ESTAS was primarily based on user satisfaction and the expert’s evaluation follow- |:i$:::::
2 ing incremental additions to the knowledge base or inference engine. Discrete components were not ..::‘:.:t"“
. tested separately. Other than tracing facilities built into the system, tools were not used for testing. .S,
Because ESTAS was not integrated into the overall system, rigorous testing was not possible nor PN =
desirable. Pan

Several observations were made throughout the development of ESTAS. First, system decomnposi- k)

tion was believed critical to the successful integration of an Al system to a larger system. Second, it how, .:l
' is believed that Al developments must go through the traditional system development cycle (iter- -~
™ ations acceptable) involving the required engineering disciplines. The implication is that engineers L_.;;.r_"
Wy across the various disciplines must be knowledgeable in Al. Third, the expert must be assigned N
. and committed to the project. Expert participation on an “as available” basis hindered progress ::c:-\.:
I on ESTAS. AN

: C.19 PAR Government Systems Corporation Summary

PAR Government Systems Corporation (PGSC) reported on three systems: Duplex Army Ra-
dio/Radar Targeting Decision Aid (DART), Cost Benefit of Tactical Air Operations (CBTAO), and
See and Project Enemy Activity (SPEA). They are all decision aids for the Tactical Air Control boae
- Center, developed to the point of a working prototype. None of the systems have been deployed. Ro0Y

The DART Aid is designed to assist the Command, Control, and Communications Countermeasures PONM
(C*'CM) Analyst in the identification/classification of the following targets:

o Unidentified Command Post (UVICP)

o Air Defense Regimental Headquarters

e SA-8 Battery

o SA-6 Battery

---—-l

- -
- - Ry

C-271

DA ACAG, c:,.n
BN N o
LIRS MM Rt MR X N
Chita oo i e

NN ONONCANNAX]

i AR L i T T W FE e g v iy Y Y Gy ey
A

-,
)] Ll

0. %8 .“ : y)) " o
": \‘:'t.i'!‘t't‘l‘. D.:‘l'.. I’:‘:‘.t'.l*t‘. o~ I.:?l.s I L s, ’“:‘,l.n.l‘i. Ly .s. ’t\"

» .

P I Y T

o e 8w 4

P~
P

- L LT o

o ..

* -
Ty 'i C ¢ I' .
:.ln‘; l.. 4‘:\:. :.{:, () . :‘l’ ".. % " ?‘. ‘:h :'.'.' "0“";"”"1 ...i NG .'sg}“ As{‘lﬁ,:l

e B & ‘8% A%
e a%h avd wth a'me b abh-alhadd aiatabniate Cataal AR RTARE LR O RN ™)) 4

C.19 PAR Government Systems Corporation Summary

SA-4 Battery/Battalion/Brigade

Division Main Headquarters

Division Forward Command Post

Division Alternate Headquarters
e Radio Relay Stations

e ZSU 234

e EW Radars

The CBTAO decision aid allocates tactical air resources into mission packages, based on the highest
probability of success. The system also provides the planners with estimates and explanations of
the cost and benefit of such tactical mission packages. The planners using the system can accept
or modify the recommended force packages based on his judgements.

The SPEA decision aid assists the tactical air resources allocation and employment process by
providing planners with the ability to systematically project the dispositions of enemy forces up
to 72 hours in advance. The force projections may be adjusted as necessary to compensate for
perceived differences between the SPEA projections and the real world. The end product is a
“planning picture” to be used by Combat Plans in interpreting the situation for the next day’s Air
Tactical Operations (ATO).

All three decision aids were contractually funded. DART was developed under the Decision Aids
for Target Aggregation (DATA) RADC contract. Both CBTAO and SPEA were developed under
the Integrated Tactical Air Control Center (ITACC) RADC contract.

At PGSC, one Al schooled engineer is tasked to work on a given decision aid. The Al engineer is
team leader where a team can be composed of 3 to 5 computer scientists and one or more in-house

domain experts. Essentially all the engineers have prior experience in developing software for the
government.

The development process used to build the decision aids consisted of the following phases:

e Task [- Analysis and Design : preparation of Problem Definition Statement (PDS) and a
high level design structure of the system. Includes requirements analysis wherein the domain
experts define the problem;

e Task Il - Development and Documentation : building a prototype or vertical slice of the
system, and preparing technical, test and user docuinentation;

e Task [l - Teat and Evaluation : system evaluation, from a technical and operational stand-

point..

The knowledge acquisition process was accomplished via sessions with knowledge engineers and
government supplied experts. Knowledge gained was recorded either by tape or by hand. In-house
experts or consultants were then used to verify the accuracy of the information provided. In cases

C-28

rvv"--"(.:ﬁ_yv

R

1) q ‘!' ‘l.

Nt

-

g

"
", O NN ML, SNt ,u ,0:',1 i,l .|. 0,

C.20 Sanders Associates, Inc. Summary

of questionable knowledge, a consensus approach was used. At PGSC, the preference is to train an
in-house domain expert to be a knowledge engineer to work with the government experts rather
than use a knowledge engineer with little or no domain experience. For the three decision aids, the
knowledge was implemented in the form of production rules with confidence factors.

PGSC has internally developed several expert system shells that use a rule based, probabilistic
inferencing mechanism. Each decision aid was developed using one of the in-house shells.

For each system, PGSC built a working prototype which, when coupled with the PDS, defined
the final product and provided a proof in principle for the finished system. Users and experts
were introduced to the system at the prototype stage, approximately 8 to 12 months into systemn
development.

Both DART and CBTAO contain a knowledge base (facts/rules), justifier, rule compiler, inference
engine, and scheduler. In the DART system the knowledge base contains 222 rules and 20,709 total
lines of code. The DART system was developed using an in-house shell written in Pascal. The
graphics and data base interfaces were written in C.

In the CBTAO system the knowledge base contains 50 rules and 12,886 total lines of code. The
CBTAO aid was developed on the Symbolics 3600 and a Tektronix 4125 was used for color graphics
display. A GKS package was developed to provide an interface to the Tektronix.

The SPEA system was built with object oriented programming using the Flavors package on the
Symbolics 3600. The SPEA system is 6,000 total lines of code and contains 115 Flavors Definitions.

Formal Test/Evaluation Plans were developed for all three decision aids. The systems were tested
as entities both technically and operationally. Technical evaluation was performed by a group of ex-
perts and nonexperts with computer science/ engineering backgrounds. Operational evaluation was
performed by potential users who responded to questionnaires. The questionnaires were designed
to extract the users’ perception of the systems in terms of strengths, weaknesses and suggested
improvements.

C.20 Sanders Associates, Inc. Summary

Sanders Associates Inc. reported on an internally funded effort to build an intelligent assistant
for the task of reprogramming automatic test equipment. The purpose of TESS, the test assistant
program, was to develop a technology base and capture some specific knowledge about testing of
ECM systems.

There were three participants from the Al side of the house; experience was minimal, although two
had successfully pursued academic studies in Al. The domain expert was from the user community.
Substantially less than half time was available from the domain expert/user representative.

TESS personnel agreed with the steps outlined in the proposed development cycle. They stressed
the iterative nature of the identification-conceptualization-formalization-impiementation subcycle.
This was driven predominantly by the need to generalize specific cases after enough problem un-
derstanding was achieved.

PRI Y

ST
-éw

5"
Jop b |

T
;':"'J
33

*:
.
S

oy

5

Py
<y

vy
>
X,

~
»)\

W
L

]
-.:

ey "’l' '{

’,
'y
’
5 Ty iy

» 8 P e

EddLl
""':..I%)"f.'l'.
AL

EPETTR YU e W30 Vol W TR PO OU PR Y R AR AR AR INICNN =8 TF N W TRV AN P YV va ta t PR QNN [a A ARON

; e
. ORtN
o
A L rGAN
i C.21 SA&E Summary (Decision Support System) A \:;., v
R Wy o]
.'. ..
; 2
': Products of the various stages included an IRAD plan in the identification phase, constraint defin- % > ’
’ tions and user interfaces in the formalization phase, and knowledge, data layout language and ‘._‘
attached primitives in the implementation phase. s‘. .':"
. il
‘ Knowledge reorganization occurred within the FRL (Frame Representation Language) to accomo- %‘x
» date generalization; sometimes this reorganization would require some functional extension in the P ‘\.::'.'
] FRL. The changes came from increased understanding of required functionality. The only controls s,
on changes were the need for team agreement. The largest changes were in the area of the user ¢
" interface and the knowledge base restructuring. It was felt that these areas represented something ’:J"\- 2,
A like exploratory programming. J"’t; \
3 . , : . : : &
;: Reviews were informal day long working sessions with Al project personnel, and a consultant. The .-":t ':‘
i main emphasis was on direction of future efforts with little time spent on reviewing past work. ' -
; The requirements analysis phase was used to set goals and directions. Many details of the require- y l";'.'.
:'. ments were deferred until prototyping was finished. No documentation was produced explicitly PG '!"‘:
" from the requirements analysis phase. There were IRAD plans, notes from review meetings, and e N ::,
N the immediate code generation (i.e. documentation of system as built/executable). Requirements .l::":::'.‘l:
h were not frozen but were left in abeyance. Users were included in the requirements analysis to the e }'
. extent their project loading could spare them. -.:E:’t
" : ‘ : . e
W Testing was informal and done on small chunks of code. There was some reliance on repetitive :".-"ﬁ"
v) . . . 4 A
W execution to provide confidence in the reliability of the modules. v
: * ~
A Tool usage was centered around the development system afforded by the Symbolics 3600 system. ¢ .
Some additional tools that came out of the TESS experience were FRL, the Data Layout Language A
\ (DLL), and the constraint propagation language (CPL). Rt
NG
Frames were selected as the basis of knowledge representation based on a consultants review of the ,,_":;: d
, project and its features. There was some support for incomplete or uncertain knowledge including ::-".-'*' !
A decision postponement.) ﬁ
h Sl
The TESS developers were not able to judge the completeness of the experts knowledge. They felt '.‘;:j ey
; that there was not enough involvement by the expert. Several items that they would look for in E;'::\r
| an expert are: availability, commitment, interest, recent and on-going practice, competence, com- ;:;: *
munication skills. Areas of interface and control with the expert were characterized by needing to NN
4 establish a tasking or contractural relationship; periodic performance reviews, and shared physical o
, —
accomodations. haGeg
D '::z\
| —
! :i\".'\ M
x C.21 SA&E Summary (Decision Support System) el
—- ®
: SA&E reported on a decision support system which is a classified project. The prototype was :,.:'::,,
py, completed within the first year. Subsequent releases are produced every three months. The system’s TN)
' development time has been reduced because of a tool built under the same contract, the Decision '::':'.’r '
Support. Development System (DSDS), which aids in the creation of run time systems. :.{-:: '
The SALE soltware developinent teams consist of two engineers to develop the decision support .
R system and fifteen engineers assigned to DSDS. One of the engineers had extensive Al experience. ::'f':“
' FALNGY
: R
. &
: C-30 VA Ve
@
Y
‘ . . AT A AT N N R R e e N e e e T N e e ,\,‘,-‘.p".-‘a\a"a‘-"j""“'vr"
Ll W >, :?'lm .’W::::ﬁ:'.::ﬂ};:::ﬁv " s“'\.f,wt:-\."'\" ’-u'f,,\"-s_ \i‘-"\f.‘-:":":‘z::‘: -\}\:_\j":r‘:-*.r".-?-:.- .-:;.-:.-:;‘;-‘PC:::)
R A e QNN

C.22 SA&E Summary (Sensitive Financial Analysis System)

Also, one engineer had minimal experience with the Department of Defense software development
process.

The general process followed in the development of the decision support system consisted of the
following phases: requirements definition, specification, validation, generation, and verification.
The requirements analysis performed involved a definition of goals, the impact of design options on
schedule and the system architecture and an iterative redefinition of requirements for each incre-
mental system release. Documentation consisted of a requirements specification that the customer
and development manager reviewed and signed off for each increment, a design document for each
iteration, and informal knowledge acquisition memos distributed to customers and the design team.

Knowledge acquisition involves regular interviews with the experts/users and additional research
on decision support. Apparently, the incremental approach to software development helps. Experts
are given a number of opportunities to supply knowledge information and to define the rules which
govern the decision support system.

The knowledge representation method is rule-based. The DSDS environmental development tool
used by the decision support system, makes use of Knowledge Engineering System (KES), Unify,
LISP procedures and GE Scan.

The major components of the system are a knowledge base, a justifier, an inference engine, a
language processor (LISP), a scheduler, an interpreter, and a communications handler (TCP/1P).

Alpha and beta tests are performed on the SA&E system. Alpha tests ensure that the integrated
system works. It is then given to the application engineers for rigorous testing. Beta test involves
a user demonstration of the system for evaluation and comments. Assessment of user satisfac-
tion is accomplished via video records of customer reactions to the product. Acceptable systemn
performance is determined by the experts.

Overall, the development and availability of DSDS vastly improved the decision support system’s
development time. Through the use of tihe DSDS environmental tool, a large production expert
system can be more easily developed and maintained.

C.22 SA&E Summary (Sensitive Financial Analysis System)

SALLE reported on a sensitive system which was developed for an unnamed client. The system,
which was contractually funded, analyzes financial data. The prototype was developed within three
months followed by the final product eight months later.

ppe?
A " *

”
S

“
[} .

-
L
)

The SAYFE software development team included two engineers, of which one had previous Al
software development experience. Neither engineer had previous experience with conventional
software development for the Department of Defense.

o

The developers found the following software development model appropriate to the Al project:

[
\"5‘:-

)
AT

L

NNYS YAASN
N .\

o
o,

o ldentification - determining problem characteristics

\n
A

o ('ntegorization - categorizing the domain knowledge

[
Pl

.I' t'. ::.‘ I. \-
e
.;‘\-_'.;.’F =5

S

1 TN AP "f 7 X N "o
.-'“' AN :"'a_a:’;",f. NN N A f.,'

e ® % '
[y
)

)

ﬂ
‘ t’f“f'f
\‘ '
R o v AT ..-v'-.l‘ "-.. , N ‘;"‘-h's. "::'

»,
5

. . » "o et
. wai 23 a SR T R val 38 9ad) 0,0 08 Pat et 000" 08 0,0 6 0 Vot falt 828 08" W .

C.23 Texas Instruments Inc. Summary

e Structuring - form the framework for the knowledge by constructing the attribute hierarchy
o lmplementation - capture knowledge

o Testing - validate the knowledge base and system behavior

A requirements analysis was performed. The system was built incrementally. Each increment
consisted of a functional system with more capabilities. Informal reviews and approvals followed.
No documentation was required by the customer. However, informal notes were distributed.

Knowledge acquisition involved the following process. First, specific statements were defined and
used as a premise for judgements the system was expected to be capable of performing. Second,
the data needed to produce the judgement was identified. Third, the logic required to make
the connection between data and judgements was determined. Finally, case studies, with known
outcomes were used to identifiy incomplete knowiedge.

The knowledge representation method was rule-based. Tools used were the Knowledge Engineering
System (KES), which is a high-level expert system shell, a standard text editor and the KES parser.

The major components of the system are a knowledge base, a justifier, a consistency enforcer, a

communications handler and an inference engine. A selection of available software tools marketed
by SA&E determined the system’s architecture.

The system was evaluated by running a series of case studies with known outcomes through the

systemn. Experts decided whether or not the system met the performance requirements. Both the
system and the individual rules were tested.

Overall, the regular interactions between the experts and the engineers led to the success of the
system. Experts were allowed an opportunity to familiarize themselves with the system, determine
what kind of data the developing engineers needed, and to correct and expand the system.

C.23 Texas Instruments Inc. Summary

Texas Instruments Inc. reported on the Production Scheduler Expert System which was to provide
a scheduling mechanism for textile fiber production and inventory. The system should have been
commercially funded prior to each of the following three phases: the demo system phase; the
prototype system phase; and the final production system phase. However, funding was removed
three months before the prototype release due to a lack of customer resources. The estimated
completion time for the final product phase was two years.

The Production Scheduler software development team consisted of one knowledge engineer to man-
age and implement. the system and two domain experts that defined the knowledge and constraints.
The knowledge engineer had a good working knowledge of Al tools and of Lisp programming
techniques and conventional software development, but little Al software development experience.
Other management and engineering resources were available. Minimal reviews between the knowl-

edge engineer and the domain experts transpired. The meetings, although limited, were found
extremely valuable.

[y

YA Yy

'l
o,
o)
s
__’ v, A8

X;

.
-%

b
"
}k“"

AL

< r
SRR

'-v.
o
R
e

x

')
L]
~n

¥

2_’ .
Y,
Ay

22
%

AR
P d
[
o
2

3

5

"y

re¢

e
(S

4
S
2%

K
o

vy
2

RASPAAIY

RN

» '\,»'. 5 'y
S '.l: X

R

17 s Tty e

N

b
X

R L P P W " Y fat (ot 19" g’ ut. " da" Aa® Se*ate’ Ba" R o S 0et Bt liat Bot Bt Bae F 0 .:.Jq"
: oy
) L)
. ey

. [4
",; “ .'t
{,, C.23 Texas Instruments Inc. Summary oy
ip v " 'v
2 R4
k,: v % 0
e No formal requirements analysis was performed. The requirement problems identified resulted from Fafiney
a previous attempt to resolve the problein through conventional programming techniques. L)

[% ."h. o
:': The general process used in Lhe development of the Production Scheduler Lo date consisted of the -:.r',"'..h

. - .
" following phases: ‘,,\::

e . o s - ‘. - y
! o Identification - determining the feasibility of the application based on the limited scope of the £

. problem and the ability to gather a static collection of facts and constraints. e
) < .‘:\.:'-J.
,‘ e Conceptualization - a frame based knowledge representation was chosen. Also, an initial ::-:':5\'..
oy knowledge network was defined. S
*’. \5:'».\.:: "
o Formalization - designing structures to organize knowledge. u,f;l;é 4
i e Implementation - gathering knowledge via the user. Wyt

2

The structure of the knowledge base was modified several times throughout impleimnentation. As
previously mentioned, no prototype was released. Formal documentation was not provided at the
end of the identification, conceptualization or formalization phases.

s%
--‘

-~

. . , , N =
: Minimal reviews between the knowledge engineer and the domain expert were allowed. The lack S
4 of direct access to the domain expert and the customer’s management hindered the successful *::‘_L“ \
[y acquisition of knowledge. Also, incorrect assumptions were made by the knowledge engineer which e >,
Y . - . . . L g g
™ resulted in disillusioned users. When the project was terminated, knowledge acquisition was not i
’ complete. -y
b SN
L The knowledge representation method is frame based. The entire system development et with bty
A no formal approval process. Tools used to develop the software were LISP and a windowing {orms N :\"»)
- management tool. N .\::
A . 3 . ’. 9
" The major components of the system were an interpreter, a scheduler and a user interface. In -
.. .. d i i
N addition, a communication handler had been planned. i
[
b A formal evaluation process, although scheduled, did not transpire since the system never reached AR
W completion. At the implementation phase, the domain expert checked the schedule test date for Bne
p accuracy. The interface was tested separately. Then, both were tested together. S
IRV}
Overall, the customer’s availability and committment as well as sufficient funds to complete the -9
:;. project. were determined as necessary, but lacking for the Production Scheduler project. The rela- ':-‘:::'
r
' tonship between the knowledge engineer and the domain expert cultivates the user’'s view of the NN
v, system, Without regular reviews, the user’s expectations of the system may not be satisfied. The '.N:‘.:-';
< ability to acquire knowledge from user’s, and the customer’s management should be encouraged "3.‘\1
Also, acceptable system behavior should be documented. @
» -.\:\:: ,
" IO
: R
h AN
:
.. o 0
o
" wl
i) iy
1Y A
W)
"‘ &l &; 4
” C-33 AW
. LR}
:“l })\" O) o }t’ \. - ~. W5 -.'(LS S-.‘S\' Y o G «.}\&\3‘ .. "_-.'"\’ ‘_-."‘\‘.\";-.';\;\'-_\'; *-."\-::":"'
‘0'. / N &3,'\ N} -. \ - \ 5\ $\ heY \\ N O CN A IR R CR RN S G (Y)
'\ N e ~
Qv At e n'\.".n'\\ NN oi.l........v ; : \

r AR N LI L W20 o LY (ST PN R SRR S . L0 #5070, 3 8 ¥ T TRy 1P B e~ " 2 . R

MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test
and selected aecquisition programs in Suppont 04
Command, Control, Communications and Intelligence
(C31) activities. Technical and engineening
dupport wilhin areas of competence is provided to
ESD Program Offices (POs) and other ESD elements

to penfoam effective acquisition of C31 systems.
The areas of technical competence include
communications, command and control, battle
management, Lingormation procedsing, surveillance
.densons, intelligence data collection and handting,
sclid state sciences, electromagnetics, and
‘propagation, and electronic, maintainability,

and compatibility.

NS
Bil7

l-
7

X0y
I

(AL,
‘7
P W

3

v
;f
Id

BRA R AR RN
s

@

, .
‘-‘h_kﬁ‘,jn',{

[N

el
iR
N AA

*5d ONST A TI RT N WT N
“:“‘.l"‘:)‘w"'u""» o AT NI Jon o R
Y, '0.‘ "..:l. " D Ay ‘.}‘ o, Pty
i !'5'!"-'!'!' "v'n'!'nit‘a‘. AL AN AN l‘!!.‘. [.A._ LeG q

L)

Noa s i f te AR
.‘-‘ P -.. ..\ .-. N 7’ -. ..-. . ﬁ.v. _.I. .I.-J-M---ﬁ\u.\.

[N ™ TSl i RN
AR YO

-h
PN TR

(1A

FA D
DATE

O AN N W N

ot
KO

A

- . e
T S . Lat™ - Bral alaC> AP, —

